Cross-entropy method: Difference between revisions

Content deleted Content added
m reflist inserted
Line 14:
Consider the general problem of estimating the quantity
 
:<math>\ell = \mathbb{E}_{\mathbf{u}}[H(\mathbf{X})] = \int H(\mathbf{x})\, f(\mathbf{x}; \mathbf{u})\, \textrm{d}\mathbf{x}</math>,
 
where <math>H</math> is some ''performance function'' and <math>f(\mathbf{x};\mathbf{u})</math> is a member of some [[parametric family]] of distributions. Using [[importance sampling]] this quantity can be estimated as
 
:<math>\hat{\ell} = \frac{1}{N} \sum_{i=1}^N H(\mathbf{X}_i) \frac{f(\mathbf{X}_i; \mathbf{u})}{g(\mathbf{X}_i)}</math>,
 
where <math>\mathbf{X}_1,\dots,\mathbf{X}_N</math> is a random sample from <math>g\,</math>. For positive <math>H</math>, the theoretically ''optimal'' importance sampling [[probability density function|density]] (pdf) is given by
 
:<math> g^*(\mathbf{x}) = H(\mathbf{x}) f(\mathbf{x};\mathbf{u})/\ell</math>.
 
This, however, depends on the unknown <math>\ell</math>. The CE method aims to approximate the optimal PDF by adaptively selecting members of the parametric family that are closest (in the [[Kullback–Leibler divergence|Kullback–Leibler]] sense) to the optimal PDF <math>g^*</math>.