Plesiochronous Digital Hierarchy: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m aggiornamento sintassi del template {{references}} |
m Sostituzione template reference, replaced: {{references}} → <references/> |
||
Riga 5:
Questa terminologia è stata introdotta in seguito alla concezione e allo sviluppo delle tecnologie di trasmissione sincrone ([[Synchronous Digital Hierarchy|SDH]] e [[SONET]]).
La tecnologia PDH consente dunque la trasmissione di dati i cui tassi (rate), pur avendo nominalmente lo stesso valore, sono suscettibili di subire lievi oscillazioni intorno al valore nominale. Per analogia, è come se due orologi procedessero nominalmente alla stessa velocità, ma, mancando qualsiasi collegamento di sincronizzazione tra i due, non è possibile garantire che la loro sincronia non subisca oscillazioni nel tempo. Questa desincronizzazione ha implicazioni sui meccanismi di trasmissione stessi della rete PDH dovendo il protocollo PDH far fronte a tale problematica evitando perdita di informazioni per ''overflow'' sui dispositivi o al contrario trasferimento di informazione ridondante non appartenente al flusso originario (''underrun'')<ref
== Implementazione ==
Il protocollo/rete PDH definisce nel dettaglio le specifiche di trasmissione in termini di [[multiplazione]]<ref name="g705">{{Cita|G.705}}</ref>, indipendentemente dalla [[velocità di trasmissione|capacità]] massima del canale supposta adeguata e/o superiore alla specifiche stesse, implementando una multiplazione a [[Time Division Multiplexing|divisione di tempo]] per segnali digitali e a interlacciamento di [[bit (informatica)|bit]] (''bit interleaving''): il flusso multiplato viene cioè costruito prendendo un bit alla volta da ciascun segnale tributario in ingresso (che hanno ciascuno un [[buffer]] dedicato in ingresso), grazie al campionamento operato da un cronosegnale di codifica/multiplazione, e sistemando i bit prodotti in sequenza ciascuno nel time slot relativo della trama del flusso aggregato in uscita<ref name="g704">{{Cita|G.704}}</ref>. Tale operazione è realizzata da un apparato chiamato multiplatore o [[multiplexer]] PDH.
In ricezione un cronosegnale ([[onda quadra]]) di decodifica/demultiplazione del flusso multiplato entrante, con frequenza di campionamento nominalmente sincrona con quella del cronosegnale di codifica/multiplazione in trasmissione, permetterà tramite un'operazione inversa di decodifica/demultiplazione di estrarre dal flusso informativo aggregato i singoli bit di ciascun flusso tributario<ref name="g705"/>.
In un sistema plesiocrono, dato che ciascuno dei tributari in ingresso possiede una frequenza effettiva simile, ma non correlata a quella degli altri tributari, è necessario però un meccanismo di compensazione per la sincronizzazione della frequenza dei flussi tributari entranti con quella del cronosegnale di multiplazione in trasmissione evitando fenomeni di ''[[buffer underrun]]'' cioè di campionamento di codifica/multiplazione con frequenza maggiore rispetto alla frequenza di tali flussi di dati che genererebbe quindi bit ridondanti errati. In fase di trasmissione, quindi, il multiplatore inserisce degli slot aggiuntivi con bit non significativi per compensare l'anticipo o il ritardo di un bit utile rispetto alla frequenza nominale di multiplazione, in modo da rendere possibile la corretta decodifica in fase di ricezione. Tali slot vengono chiamati bit di giustificazione (''justification'') o di riempimento (''stuffing'')<ref name="just">Vedasi G.742, G.743, G.745, G.751, G.752, G.753, G.754</ref>. In ricezione il demultiplatore riconoscerà i bit non utili di riempimento grazie ad opportuni bit di segnalazione di giustificazione aggiuntivi trasmessi scartando il tutto<ref name="just"/>. Nel caso invece di campionamento di codifica/multiplazione in trasmissione con frequenza minore della frequenza di interarrivo dei bit dei flussi tributari da multiplare cioè quindi con perdita di bit (''[[buffer overflow]]'') non è possibile alcuna forma di compensazione, ma si dovrà semplicemente evitare il verificarsi di tale situazione.
Riga 96:
== Gerarchia PDH europea ==
La trama PDH di base nello standard europeo (denominata E1) è costituita da un flusso a 2,048 Mbit/s<ref name="g732">{{Cita|G.732}}</ref>, strutturato in trentadue time slot da 64 kbit/s ciascuno (un flusso a 64 kbit/s corrisponde a un singolo canale telefonico)<ref name="g735">{{Cita|G.735}}</ref>. Di questi, trenta slot vengono usati per il trasporto dei dati mentre due sono utilizzati per trasmettere informazioni di servizio del sistema. L'esatto tasso (rate) dei dati è controllato da un orologio interno all'apparato alla frequenza nominale di 2,048
I flussi a 2,048 Mbit/s così creati sono poi raggruppati in gruppi da quattro per creare un unico flusso ad 8,448 Mbit/s, che rappresenta il secondo livello della gerarchia europea (E2)<ref name="g744">{{Cita|G.744}}</ref>. Anche in questo caso la multiplazione è di tipo ''bit interleaving'' e anche in questo caso le differenze di tasso effettivo tra i quattro flussi tributari vengono compensate tramite bit di giustificazione e di stuffing. A loro volta, quattro tributari a E2 possono essere multiplati per ottenere un flusso di terzo livello (E3) da 34,368 Mbit/s<ref name="g753">{{Cita|G.753}}</ref>; quattro tributari E3 formano un flusso da 139,264 Mbit/s (E4)<ref name="g754">{{Cita|G.754}}</ref> e quattro tributari da 140 Mbit/s formano un flusso da 564,992 Mbit/s. Nella pratica, oggi si usano solo flussi di tipo E1, E3 ed E4, che sono quelli più adatti per essere trasportati nella gerarchia sincrona SDH. Gli altri tipi di flusso (E2, E5) sono di fatto obsoleti e non più utilizzati se non in modo marginale in parti di rete molto vecchie.
Riga 111:
==Note==
==Bibliografia==
|