Content deleted Content added
Bibcode Bot (talk | contribs) m Adding 2 arxiv eprint(s), 3 bibcode(s) and 0 doi(s). Did it miss something? Report bugs, errors, and suggestions at User talk:Bibcode Bot |
Citation bot (talk | contribs) m Alter: title. Add: isbn, chapter, pages, title-link, year. Removed URL that duplicated unique identifier. Removed parameters. | You can use this bot yourself. Report bugs here. | User-activated. |
||
Line 1:
The '''conditional quantum entropy''' is an [[entropy measure]] used in [[quantum information theory]]. It is a generalization of the [[conditional entropy]] of [[classical information theory]]. For a bipartite state <math>\rho^{AB}</math>, the conditional entropy is written <math>S(A|B)_\rho</math>, or <math>H(A|B)_\rho</math>, depending on the notation being used for the [[von Neumann entropy]]. The quantum conditional entropy was defined in terms of a conditional density operator <math> \rho_{A|B} </math> by [[Nicolas Cerf]] and [[Chris Adami]],<ref>{{Cite journal|last=Cerf|first=N. J.|last2=Adami|first2=C.|date=1997|title=Negative Entropy and Information in Quantum Mechanics
In what follows, we use the notation <math>S(\cdot)</math> for the [[von Neumann entropy]], which will simply be called "entropy".
Line 10:
By analogy with the classical conditional entropy, one defines the conditional quantum entropy as <math>S(A|B)_\rho \ \stackrel{\mathrm{def}}{=}\ S(AB)_\rho - S(B)_\rho</math>.
An equivalent operational definition of the quantum conditional entropy (as a measure of the [[quantum communication]] cost or surplus when performing [[quantum state]] merging) was given by [[Michał Horodecki]], [[Jonathan Oppenheim]], and [[Andreas Winter]].<ref>{{Cite journal|last=Horodecki|first=Michał|last2=Oppenheim|first2=Jonathan|last3=Winter|first3=Andreas
==Properties==
Line 18:
==References==
{{reflist}}
* {{Cite book|title=
*{{citation|first=Mark M.|last=Wilde|arxiv=1106.1445|title=Quantum Information Theory|pages=xi-xii|year=2017|publisher=Cambridge University Press|bibcode = 2011arXiv1106.1445W |doi=10.1017/9781316809976.001|chapter=Preface to the Second Edition|isbn=9781316809976}}
[[Category:Quantum mechanical entropy]]
|