Sinc function: Difference between revisions

Content deleted Content added
m latex Correction
No edit summary
Line 1:
The '''sinc function''', also known as the '''interpolation function''' or '''filtering function''', is the product of a [[sine function]] and a [[monotonic function|monotonically decreasing function]]. It is defined by:
 
:<math>\operatornamemathbf{sinc} \left( x \right) = \frac{\sin \left( x \right)}{x}</math>
<math>
\operatorname{sinc} \left( x \right) = \frac{\sin \left( x \right)}{x}
</math>
 
or:
 
:<math>\operatornamemathbf{sinc} \left( x \right) = \frac{\sin \left( \pi x \right)}{\pi x}</math>
<math>
\operatorname{sinc} \left( x \right) = \frac{\sin \left( \pi x \right)}{\pi x}
</math>
 
It has a [[removable singularity]] at the origin. Sinc<math>\mathbf{sinc}(0)=1,</math> despiteby the division by[[L'Hôpital's zerorule]].
 
The sinc [[function (mathematics)|function]] [[oscillation|oscillates]] with decreasing [[amplitude]]. Applications of the sinc function are found in [[communication theory]], [[control theory]], and [[optics]].
 
The [[Fourier transform]] is
 
:<math>\frac{W}{\pi} \mathbf{sinc}(W t) = \mathbf{rect}\left(\frac{\omega}{2 W}\right)</math>
:''See also'': [[trigonometric function]]
 
where <math>rect</math> is the [[rectangular function]].
 
==See also==
:''See also'': *[[trigonometric function]]
*[[L'Hôpital's rule]]
 
[[Category:Special functions]]
[[Category:Trigonometry]]