Cross-correlation matrix: Difference between revisions

Content deleted Content added
Reference.
No edit summary
Line 35:
<math>\operatorname{R}_{\mathbf{X}\mathbf{Y}}</math> is a <math>3 \times 2</math> matrix whose <math>(i,j)</math>-th entry is <math>\operatorname{E}[X_i Y_j]</math>.
 
==crossCross-correlation matrix of complex random vectors==
If <math>\mathbf{Z} = (Z_1,\ldots,Z_m)^{\rm T}</math> and <math>\mathbf{W} = (W_1,\ldots,W_n)^{\rm T}</math> are [[complex random vector|complex random vectors]], each containing random variables whose expected value and variance exist, the cross-correlation matrix of <math>\mathbf{Z}</math> and <math>\mathbf{W}</math> is defined by
 
Line 46:
:<math>\operatorname{E}[\mathbf{X} \mathbf{Y}^{\rm T}] = \operatorname{E}[\mathbf{X}]\operatorname{E}[\mathbf{Y}]^{\rm T}.</math>
 
They are uncorrelated if and only if their cross-covariance matrix <math>\operatorname{K}_{\mathbf{X}\mathbf{Y}}</math> matrix is zero.
 
In the case of two [[complex random vector|complex random vectors]] <math>\mathbf{Z}</math> and <math>\mathbf{W}</math> they are called uncorrelated if
Line 54:
 
==Properties==
* The ''cross-covariance matrix'' is related===Relation to the cross-correlationcovariance matrix as follows:===
The cross-correlation is related to the ''cross-covariance matrix'' as follows:
:<math>\operatorname{K}_{\mathbf{X}\mathbf{Y}} = \operatorname{E}[(\mathbf{X} - \operatorname{E}[\mathbf{X}])(\mathbf{Y} - \operatorname{E}[\mathbf{Y}])^{\rm T}] = \operatorname{R}_{\mathbf{X}\mathbf{Y}} - \operatorname{E}[\mathbf{X}] \operatorname{E}[\mathbf{Y}]^{\rm T}</math>
: Respectively for complex random vectors: