Lehmer–Schur algorithm: Difference between revisions

Content deleted Content added
m task, replaced: Math.Z. → Math. Z.
Windeman (talk | contribs)
Removed repeated text and remark on Wilf's algorithm
Line 1:
In [[mathematics]], the '''Lehmer–Schur algorithm''' (named after [[Derrick Henry Lehmer]] and [[Issai Schur]]) is a [[root-finding algorithm]] extending the idea of enclosing roots like in the one-dimensional [[bisection method]] to the complex plane. It uses the Schur–Cohn test to test increasingly smaller disks for the presence or absence of roots. Alternative methods like Wilf's algorithm apply different tests to differently shaped areas but keep the idea of descent by subdivision.
 
==Lehmer-Schur algorithm==
 
In [[mathematics]], the '''Lehmer–Schur algorithm''' (named after [[Derrick Henry Lehmer]] and [[Issai Schur]]) is a [[root-finding algorithm]] for [[complex polynomial]]s, extending the idea of enclosing roots like in the one-dimensional [[bisection method]] to the complex plane. It uses the Schur-Cohn test to test increasingly smaller disks for the presence or absence of roots.