Content deleted Content added
"In the first component we give a quantum reduction from approximate SVP (in the worst case) on ideal lattices in R to the search version of ring-LWE, where the goal is to recover the secret s ∈ Rq (with high probability, for any s) from arbitrarily many noisy products" is the correct quote (changed F_q to R_q) |
Citation bot (talk | contribs) m Alter: title, quote. | You can use this bot yourself. Report bugs here.| Activated by User:Marianne Zimmerman |
||
Line 3:
== Background ==
The security of modern cryptography, in particular [[public-key cryptography]], is based on the assumed intractability of solving certain computational problems if the size of the problem is large enough and the instance of the problem to be solved is chosen randomly. The classic example that has been used since the 1970s is the [[integer factorization]] problem. It is believed that it is computationally intractable to factor the product of two prime numbers if those prime numbers are large enough and chosen at random.<ref>{{cite conference |url=https://ieeexplore.ieee.org/document/365700 |title=Algorithms for quantum computation: discrete logarithms and factoring |first=Peter |last=Shor |date=20 November 1994 |conference=35th Annual Symposium on Foundations of Computer Science |publisher=IEEE |archive-date=6 August 2002 |___location=Santa Fe |isbn=0-8186-6580-7 |doi=10.1109/SFCS.1994.365700 |access-date=8 January 2019 |quote=
The ring learning with errors (RLWE) problem is built on the arithmetic of [[polynomials]] with coefficients from a [[finite field]].<ref name=":0" /> A typical polynomial <math display="inline">a(x)</math> is expressed as:
Line 42:
The α-SVP in regular lattices is known to be [[NP-hard]] due to work by Daniele Micciancio in 2001, although not for values of α required for a reduction to general learning with errors problem.<ref name=":1">{{Cite journal|title = The Shortest Vector in a Lattice is Hard to Approximate to within Some Constant|journal = SIAM Journal on Computing|date = January 1, 2001|issn = 0097-5397|pages = 2008–2035|volume = 30|issue = 6|doi = 10.1137/S0097539700373039|first = D.|last = Micciancio|citeseerx = 10.1.1.93.6646}}</ref> However, there is not yet a proof to show that the difficulty of the α-SVP for ideal lattices is equivalent to the average α-SVP. Rather we have a proof that if there are ''any'' α-SVP instances that are hard to solve in ideal lattices then the RLWE Problem will be hard in random instances.<ref name=":0" />
Regarding the difficulty of Shortest Vector Problems in Ideal Lattices, researcher Michael Schneider writes, ''"So far there is no SVP algorithm making use of the special structure of ideal lattices. It is widely believed that solving SVP (and all other lattice problems) in ideal lattices is as hard as in regular lattices."''<ref>{{Cite journal|title = Sieving
Peikert believes that these security equivalences make the RLWE problem a good basis for future cryptography. He writes: ''"There is a mathematical proof that the'' ''only'' ''way to break the cryptosystem (within some formal attack model) on its random instances is by being able to solve the underlying lattice problem in the'' ''worst case"'' (emphasis in the original).<ref>{{Cite web |title = What does GCHQ's "cautionary tale" mean for lattice cryptography? |url = http://web.eecs.umich.edu/~cpeikert/soliloquy.html |website = www.eecs.umich.edu|accessdate = 2016-01-05 |archiveurl = https://web.archive.org/web/20160317165656/http://web.eecs.umich.edu/~cpeikert/soliloquy.html |archivedate = 2016-03-17}}</ref>
== RLWE Cryptography ==
A major advantage that RLWE based cryptography has over the original learning with errors (LWE) based cryptography is found in the size of the public and private keys. RLWE keys are roughly the square root of keys in LWE.<ref name=":0" /> For 128 [[bits of security]] an RLWE cryptographic algorithm would use public keys around 7000 bits in length.<ref>{{Cite journal|title = A
Three groups of RLWE cryptographic algorithms exist:
Line 55:
The fundamental idea of using LWE and Ring LWE for key exchange was proposed and filed at the University of Cincinnati in 2011 by Jintai Ding. The basic idea comes from the associativity of matrix multiplications, and the errors are used to provide the security. The paper<ref>{{Cite journal|last=Ding|first=Jintai|last2=Xie|first2=Xiang|last3=Lin|first3=Xiaodong|date=2012-01-01|title=A Simple Provably Secure Key Exchange Scheme Based on the Learning with Errors Problem|url=http://eprint.iacr.org/2012/688|journal=|volume=|issue=|doi=|pmid=|access-date=|via=}}</ref> appeared in 2012 after a provisional patent application was filed in 2012.
In 2014, Peikert<ref>{{Cite journal|last=Peikert|first=Chris|date=2014-01-01|title=Lattice
=== Ring learning with errors signature (RLWE-SIG) ===
|