Loss functions for classification: Difference between revisions

Content deleted Content added
fixed sign f =f_0/1
updated refrences
Line 58:
A loss function is said to be ''classification-calibrated or Bayes consistent'' if its optimal <math>f^*_{\phi}</math> is such that <math>f^*_{0/1}(\vec{x}) = \operatorname{sgn}(f^*_{\phi}(\vec{x}))</math>and is thus optimal under the Bayes decision rule. A Bayes consistent loss function allows us to find the Bayes optimal decision function <math>f^*_{\phi}</math> by directly minimizing the expected risk and without having to explicitly model the probability density functions.
 
For convex margin loss <math>\phi(\upsilon)</math>, it can be shown that <math>\phi(\upsilon)</math>is Bayes consistent if and only if it is differentiable at 0 and <math>\phi'(0)=0</math><ref>{{Cite journal|last=Bartlett|first=Peter L.|last2=Jordan|first2=Michael I.|last3=Mcauliffe|first3=Jon D.|date=2006|title=Convexity, Classification, and Risk Bounds|url=https://www.jstor.org/stable/30047445|journal=Journal of the American Statistical Association|volume=101|issue=473|pages=138–156|issn=0162-1459}}</ref><ref name="mit" />. Yet, this result does not exclude the existence of non-convex Bayes consistent loss functions. A more general result states that Bayes consistent loss functions can be generated using the following formulation <ref name="robust:0"> {{CitationCite journal|last=Masnadi-Shirazi|first=Hamed|last2=Vasconcelos|first2=Nuno|date=2008|title=On the Design of Loss Functions for Classification: theoryTheory, robustnessRobustness to outliersOutliers, and SavageBoost|url=http://wwwdl.svclacm.ucsd.eduorg/publications/conference/2008/nips08/NIPS08LossesWITHTITLEcitation.pdfcfm?id=2981780.2981911|publisherjournal=StatisticalProceedings Visualof Computingthe Laboratory,21st UniversityInternational ofConference California,on Neural Information SanProcessing DiegoSystems|accessdateseries=6NIPS'08|___location=USA|publisher=Curran DecemberAssociates 2014Inc.|last2pages=Vasconcelos1049–1056|first2isbn=Nuno9781605609492}}</ref>
 
<math>\phi(v)=C[f^{-1}(v)]+(1-f^{-1}(v))C'[f^{-1}(v)] \;\;\;\;\;(2)</math>,
 
where <math>f(\eta), (0\leq \eta \leq 1)</math> is any invertible function such that <math>f^{-1}(-v)=1-f^{-1}(v)</math> and <math>C(\eta)</math>is any differentiable strictly concave function such that <math>C(\eta)=C(1-\eta)</math>. Table-I shows the generated Bayes consistent loss functions for some example choices of <math>C(\eta)</math>and <math>f^{-1}(v)</math>. Note that the Savage and Tangent loss are not convex. Such non-convex loss functions have been shown to be useful in dealing with outliers in classification<ref name="robust:0" /><ref>{{Cite journal|last=Leistner|first=C.|last2=Saffari|first2=A.|last3=Roth|first3=P. M.|last4=Bischof|first4=H.|date=2009-9|title=On robustness of on-line boosting - a competitive study|url=https://ieeexplore.ieee.org/document/5457451|journal=2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops|pages=1362–1369|doi=10.1109/ICCVW.2009.5457451}}</ref>. For all loss functions generated from (2) , the posterior probability <math>p(y=1|\vec{x})</math> can be found using the invertible ''link function'' as <math>p(y=1|\vec{x})=\eta=f^{-1}(v)</math>.
{| class="wikitable"
|+Table-I