Content deleted Content added
No edit summary |
Attribution: some of the content in this article was copied from Infrared fixed point on October 11, 2019. Please see the history of that page for full attribution. |
||
Line 88:
The Yukawa couplings of the up, down, charm, strange and bottom quarks, are small at the extremely high energy scale of [[Grand Unified Theory|grand unification]], <math> \mu \approx 10^{15} </math> GeV. Therefore, the <math>y^2</math> term can be neglected in the above equation. Solving, we then find that <math>y</math> is increased slightly at the low energy scales at which the quark masses are generated by the Higgs, <math> \mu \approx 100 </math> GeV.
On the other hand, solutions to this equation for large initial values <math>y</math> cause the ''rhs'' to quickly approach smaller values as we descend in energy scale. The above equation then locks <math>y</math> to the QCD coupling <math>g_3</math>. This is known as the (infrared) quasi-fixed point of the renormalization group equation for the Yukawa coupling.<ref>{{cite journal|last1=Pendleton|first1=B.|last2=Ross|first2=G.G.|title=Mass and Mixing Angle Predictions from Infrared Fixed points|journal=Phys. Lett.|date=1981|volume=B98|page=291|doi=10.1016/0370-2693(81)90017-4|bibcode = 1981PhLB...98..291P }}</ref><ref>{{cite journal|last1=Hill|first1=C.T.|title=Quark and Lepton masses from Renormalization group fixed points|journal=Phys. Rev.|date=1981|volume=D24|page=691|doi=10.1103/PhysRevD.24.691|bibcode = 1981PhRvD..24..691H }}</ref>
The value of the quasi-fixed point is fairly precisely determined in the Standard Model, leading to a predicted [[top quark]] mass of 230 GeV. The observed top quark mass of 174 GeV is slightly lower than the standard model prediction by about 30% which suggests there may be more Higgs doublets beyond the single standard model Higgs boson.
=== Minimal Supersymmetric Standard Model ===
{{Main|Minimal Supersymmetric Standard Model#Gauge-Coupling Unification}}
Renomalization group studies in the Minimal Supersymmetric Standard Model (MSSM) of grand unification and the Higgs-Yukawa fixed points were very encouraging that the theory was on the right track. So far, however, no evidence of the predicted MSSM particles has emerged in experiment at the [[Large Hadron Collider]].
==See also==
*[[Callan-Symanzik equation]]
*[[Quantum triviality]]
▲*[[Infrared fixed point]]
==References==
|