Content deleted Content added
Joel Brennan (talk | contribs) m →Preliminaries: added wikilink |
Joel Brennan (talk | contribs) m →Empty set, singleton, unordered pairs and tuples: formatting and wikilinks |
||
Line 20:
== Empty set, singleton, unordered pairs and tuples ==
These constructions appear first because they are the simplest constructions in set theory, not because they are the first constructions that come to mind in mathematics (though the notion of finite set is certainly fundamental
:<math>\left.\varnothing\right. \, \overset{\mathrm{def.}}{=} \left\{x : x \neq x\right\}</math>▼
▲:<math>\left.\varnothing\right. \overset{\mathrm{def.}}{=} \left\{x : x \neq x\right\}</math>
For each object <math>x</math>, there is a set <math>\{x\}</math> with <math>x</math> as its only element:
:<math>\left\{x\right\} \overset{\mathrm{def.}}{=} \left\{y : y = x\right\}</math>
For objects <math>x</math> and <math>y</math>, there is a set <math>\{x,y\}</math> containing <math>x</math> and <math>y</math> as its only elements:
:<math>\left\{x,y\right\} \overset{\mathrm{def.}}{=} \left\{z : z=x \vee z = y\right\}</math>
The [[Union (set theory)|union]] of two sets is defined in the usual way:
:<math>\left.x \cup y\right. \, \overset{\mathrm{def.}}{=} \left\{z : z \in x \vee z \in y\right\}</math>
This is a recursive definition of unordered <math>n</math>-tuples for any concrete <math>n</math> (finite sets given as lists of their elements:)
:<math>\left\{x_1, \ldots, x_n, x_{n+1}\right\} \overset{\mathrm{def.}}{=} \left\{x_1, \ldots, x_n\right\} \cup \left\{x_{n+1}\right\}</math>
In
== Ordered pair ==
|