Content deleted Content added
Line 99:
When the applied voltage is zero, the Fermi level at the metal electrodes will be inside the energy gap. When the voltage increases to the threshold value, tunnelling from left to right occurs, and when the reversed voltage increases above the threshold level, tunnelling from right to left occurs.
The existence of the Coulomb blockade is clearly visible in the [[
In the case where the permeability of the tunnel barriers is very different <math>(R_{T1} \gg R_{T2} = R_T),</math> a stepwise I-V characteristic of the SET arises. An electron tunnels to the island through the first transition and is retained on it, due to the high tunnel resistance of the second transition. After a certain period of time, the electron tunnels through the second transition, however, this process causes a second electron to tunnel to the island through the first transition. Therefore, most of the time the island is charged in excess of one charge. For the case with the inverse dependence of permeability <math>(R_{T1} \ll R_{T2} = R_T),</math> the island will be unpopulated and its charge will decrease stepwise.<ref>{{cite journal|last1=Gupta|first1=M.|title=A Study of Single Electron Transistor (SET)|journal=International Journal of Science and Research|volume=5|issue=1|year=2016|pages=474–479|issn=2319-7064|doi=10.21275/v5i1.NOV152704}}</ref> Only now can we understand the principle of operation of a SET. Its equivalent circuit can be represented as two tunnel junctions connected in series via the QD, perpendicular to the tunnel junctions is another control electrode (gate) connected. The gate electrode is connected to the island through a control tank <math>C_{\rm G}.</math> The gate electrode can change the background charge in the dielectric, since the gate additionally polarizes the island so that the island charge becomes equal to
|