Content deleted Content added
m Replacing File:PAC-Spectroscopy-instrumental-setup.png with Commons version File:Pacaufbau.png (report errors here) |
m Replacing File:PAC-Spectroscopy-single-spectra.png with Commons version File:Singleforwiki.png (report errors here) |
||
Line 14:
PAC uses radioactive probes, which have an intermediate state with decay times of 2 ns to approx. 10 μs, see example <sup>111</sup>In in the picture on the right. After electron capture (EC), indium transmutates to cadmium. Immediately thereafter, the <sup>111</sup>cadmium nucleus is predominantly in the excited 7/2+ nuclear spin and only to a very small extent in the 11/2- nuclear spin, the latter should not be considered further. The 7/2+ excited state transitions to the 5/2+ intermediate state by emitting a 171 keV γ-quantum. The intermediate state has a lifetime of 84.5 ns and is the sensitive state for the PAC. This state in turn decays into the 1/2+ ground state by emitting a γ-quantum with 245 keV. PAC now detects both γ-quanta and evaluates the first as a start signal, the second as a stop signal.
[[File:
Now one measures the time between start and stop for each event. This is called coincidence when a start and stop pair has been found. Since the intermediate state decays according to the laws of radioactive decay, one obtains an exponential curve with the lifetime of this intermediate state after plotting the frequency over time. Due to the non-spherically symmetric radiation of the second γ-quantum, the so-called anisotropy, which is an intrinsic property of the nucleus in this transition, it comes with the surrounding electrical and/or magnetic fields to a periodic disorder ([[hyperfine interaction]]). The illustration of the individual spectra on the right shows the effect of this disturbance as a wave pattern on the exponential decay of two detectors, one pair at 90° and one at 180° to each other. The waveforms to both detector pairs are shifted from each other. Very simply, one can imagine a fixed observer looking at a lighthouse whose light intensity periodically becomes lighter and darker. Correspondingly, a detector arrangement, usually four detectors in a planar 90 ° arrangement or six detectors in an octahedral arrangement, "sees" the rotation of the core on the order of magnitude of MHz to GHz.
|