Content deleted Content added
MOS:HEAD, MOS:ALGO |
|||
Line 51:
This yields the following randomized algorithm that happens to coincide with the so-called Estimation of Multivariate Normal Algorithm (EMNA), an [[estimation of distribution algorithm]].
===
// Initialize parameters
mu :=
sigma2 := 100
t := 0
Line 60:
Ne := 10
// While maxits not exceeded and not converged
'''while''' t < maxits '''and''' sigma2 > epsilon '''do'''
// Obtain N samples from current sampling distribution
X := SampleGaussian(mu, sigma2, N)
// Evaluate objective function at sampled points
S := exp(
// Sort X by objective function values in descending order
X := sort(X, S)
// Update parameters of sampling distribution
mu := mean(X(1:Ne))
sigma2 := var(X(1:Ne))
t := t + 1
// Return mean of final sampling distribution as solution
'''return''' mu
==Related methods==
* [[Simulated annealing]]
* [[Genetic algorithms]]
* [[Harmony search]]
* [[Estimation of distribution algorithm]]
* [[Tabu search]]
* [[Natural Evolution Strategy]]
==See also==
* [[Cross entropy]]
* [[Kullback–Leibler divergence]]
* [[Randomized algorithm]]
* [[Importance sampling]]
== Journal
* De Boer, P-T., Kroese, D.P, Mannor, S. and Rubinstein, R.Y. (2005). A Tutorial on the Cross-Entropy Method. ''Annals of Operations Research'', '''134''' (1), 19–67.[http://www.maths.uq.edu.au/~kroese/ps/aortut.pdf]
*Rubinstein, R.Y. (1997). Optimization of Computer simulation Models with Rare Events, ''European Journal of Operational Research'', '''99''', 89–112.
==Software
* [https://cran.r-project.org/web/packages/CEoptim/index.html '''CEoptim''' R package]
==References==
|