Content deleted Content added
Undid revision 929820651 by 2409:4064:212:BD6F:0:0:22EE:28A4 (talk) |
|||
Line 20:
==Other properties==
The state
: <math>\mathbf{\Phi}(t, \tau)\equiv\mathbf{U}(t)\mathbf{U}^{-1}(\tau)</math>▼
where <math>\mathbf{U}(t)</math> is the [[Fundamental matrix (linear differential equation)|fundamental solution matrix]] that satisfies▼
: <math>\dot{\mathbf{U}}(t)=\mathbf{A}(t)\mathbf{U}(t)</math>▼
is a <math>n \times n</math> matrix that is a linear mapping onto itself, i.e., with <math>\mathbf{u}(t)=0</math>, given the state <math>\mathbf{x}(\tau)</math> at any time <math>\tau</math>, the state at any other time <math>t</math> is given by the mapping▼
:<math>\mathbf{x}(t)=\mathbf{\Phi}(t, \tau)\mathbf{x}(\tau)</math>▼
1. It is continuous and has continuous derivatives.
5. It satisfies the differential equation <math>\frac{\partial \mathbf{\Phi}(t, t_0)}{\partial t} = \mathbf{A}(t)\mathbf{\Phi}(t, t_0)</math> with initial conditions <math>\mathbf{\Phi}(t_0, t_0) = I</math>.
▲: <math>\mathbf{\Phi}(t, \tau)\equiv\mathbf{U}(t)\mathbf{U}^{-1}(\tau)</math>
▲where <math>\mathbf{U}(t)</math> is the [[Fundamental matrix (linear differential equation)|fundamental solution matrix]] that satisfies
▲: <math>\dot{\mathbf{U}}(t)=\mathbf{A}(t)\mathbf{U}(t)</math>
▲is a <math>n \times n</math> matrix that is a linear mapping onto itself, i.e., with <math>\mathbf{u}(t)=0</math>, given the state <math>\mathbf{x}(\tau)</math> at any time <math>\tau</math>, the state at any other time <math>t</math> is given by the mapping
▲:<math>\mathbf{x}(t)=\mathbf{\Phi}(t, \tau)\mathbf{x}(\tau)</math>
7. If the system is [[time-invariant]], we can define <math> \mathbf{\Phi}</math>; as:
:<math>\mathbf{\Phi}(t, t_0) = e^{\mathbf{A}(t - t_0)}</math>
|