Content deleted Content added
→Properties: corr: cdf of a discrete random variable doesn't have to be a step function |
→Properties: minor refinement of the 'discrete random variables' example |
||
Line 44:
* The [[definite integral]] of a step function is a [[piecewise linear function]].
* The [[Lebesgue integral]] of a step function <math>\textstyle f = \sum\limits_{i=0}^n \alpha_i \chi_{A_i}</math> is <math>\textstyle \int f\,dx = \sum\limits_{i=0}^n \alpha_i \ell(A_i),\,</math> where <math>\textstyle\ell(A)</math> is the length of the interval <math>A,</math> and it is assumed here that all intervals <math>A_i</math> have finite length. In fact, this equality (viewed as a definition) can be the first step in constructing the Lebesgue integral.<ref>{{Cite book | author=Weir, Alan J | authorlink= | coauthors= | title=Lebesgue integration and measure | date= | publisher=Cambridge University Press, 1973 | ___location= | isbn=0-521-09751-7 |chapter= 3}}</ref>
* A [[discrete random variable]]
==See also==
|