Procedural memory: Difference between revisions

Content deleted Content added
Alter: url, journal. Add: url. | You can use this tool yourself. Report bugs here. | via #UCB_Gadget
Citation bot (talk | contribs)
m Add: pmid. | You can use this bot yourself. Report bugs here. | Activated by User:AManWithNoPlan | All pages linked from User:AManWithNoPlan/sandbox2 | via #UCB_webform_linked
Line 111:
===Limbic system===
{{details|topic=the limbic system|Limbic system}}
The [[limbic system]] is a group of unique brain areas that work together in many interrelated processes involved in emotion, motivation, learning and memory. Current thinking indicates that the limbic system shares anatomy with a component of the neostriatum already credited with the major task of controlling procedural memory. Once thought to be functionally separate, this vital section of the brain found on the striatum's back border has only recently been linked to memory and is now being called the marginal division zone (MrD).<ref>{{cite journal | last1 = Shu | first1 = S.Y. | last2 = Bao | first2 = X.M. | last3 = Li | first3 = S.X. | last4 = Chan | first4 = W.Y. | last5 = Yew | first5 = D. | year = 2000 | title = A New Subdivision, Marginal Division, in the Neostriatum of the Monkey Brain | url = | journal = Biomedical and Life Sciences | volume = 25 | issue = 2| page = 555 | pmid = 10786707 }}</ref> A special membrane protein associated with the limbic system is said to concentrate in related structures and to travel towards the basal nuclei. To put things simply, the activation of brain regions that work together during procedural memory can be followed because of this limbic system associated membrane protein and its application in molecular and [[immunohistochemistry]] research.<ref>{{cite journal | last1 = Yun Shu | first1 = Si | last2 = Min Bao | first2 = Xin | last3 = Ning | first3 = Qun | last4 = Ming Wu | first4 = Yong | last5 = Wang | first5 = Jun | last6 = Leonard | first6 = Brian E. | year = 2003 | title = New component of the limbic system; Marginal division of the neostriatum that links the limbic system to the basal nucleus of Meynert | url = | journal = Journal of Neuroscience Research | volume = 71 | issue = 5| pages = 751–757 | doi=10.1002/jnr.10518| pmid = 12584733 }}</ref>
 
==Physiology==
Line 165:
===Parkinson's disease===
{{details|topic=Parkinson's disease|Parkinson's disease}}
[[Parkinson's disease]] is known to affect selective areas in the frontal lobe area of the brain. Current scientific information suggests that the memory performance problems notably shown in patients are controlled by unusual frontostriatal circuits.<ref>{{cite journal | last1 = Sarazin | first1 = M | last2 = Deweer | first2 = B | last3 = Pillon | first3 = B | last4 = Merkl | first4 = A | last5 = Dubois | first5 = B | date = Dec 2001 | title = Procedural learning and Parkinson disease: implication of striato-frontal loops | url = | journal = Rev Neurol | volume = 157 | issue = 12| pages = 1513–8 | pmid = 11924447 }}</ref> Parkinson's patients often have difficulty with the sequence-specific knowledge that is needed in the acquisition step of procedural memory.<ref>{{cite journal | last1 = Muslimovic | first1 = D | last2 = Post | first2 = B | last3 = Speelman | first3 = JD | last4 = Schmand | first4 = B | date = Nov 2007 | title = Motor procedural learning in Parkinson's disease | url = | journal = Brain | volume = 130 | issue = 11| pages = 2887–97 | doi=10.1093/brain/awm211| pmid = 17855374 }}</ref> Further evidence suggests that the frontal lobe networks relate to executive function and only act when specific tasks are presented to the patient. This tells us that the frontostriatal circuits are independent but able to work collaboratively with other areas of the brain to help with various things such as paying attention or focusing.<ref>{{cite journal | last1 = Sarazin | first1 = M | last2 = Deweer | first2 = B | last3 = Merkl | first3 = A | last4 = Von Poser | first4 = N | last5 = Pillon | first5 = B | last6 = Dubois | first6 = B | date = Mar 2002 | title = Procedural learning and striatofrontal dysfunction in Parkinson's disease | url = | journal = Mov Disord | volume = 17 | issue = 2| pages = 265–73 | doi=10.1002/mds.10018| pmid = 11921111 }}</ref>
 
===Schizophrenia===