Content deleted Content added
Citation bot (talk | contribs) Add: s2cid, author pars. 1-1. Removed URL that duplicated unique identifier. Removed parameters. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Activated by AManWithNoPlan | All pages linked from User:AManWithNoPlan/sandbox2 | via #UCB_webform_linked |
m v2.03b - Bot T20 CW#61 - WP:WCW project (Reference before punctuation) |
||
Line 1:
{{short description|Algorithm in numerical linear algebra}}
In [[numerical linear algebra]], the '''Bartels–Stewart algorithm''' is used to numerically solve the [[Sylvester equation|Sylvester matrix equation]] <math> AX - XB = C</math>. Developed by R.H. Bartels and G.W. Stewart in 1971,<ref name=":0">{{Cite journal|last1=Bartels|first1=R. H.|last2=Stewart|first2=G. W.|date=1972|title=Solution of the matrix equation AX + XB = C [F4]|journal=Communications of the ACM|volume=15|issue=9|pages=820–826|doi=10.1145/361573.361582|issn=0001-0782}}</ref>
== The algorithm ==
Let <math>X, C \in \mathbb{R}^{m \times n}</math>, and assume that the eigenvalues of <math>A</math> are distinct from the eigenvalues of <math>B</math>. Then, the matrix equation <math> AX - XB = C</math> has a unique solution. The Bartels–Stewart algorithm computes <math>X</math> by applying the following steps:<ref name=":1" />
1.Compute the [[Schur decomposition|real Schur decompositions]]
Line 24:
=== Computational cost ===
Using the [[QR algorithm]], the [[Schur decomposition| real Schur decompositions]] in step 1 require approximately <math>10(m^3 + n^3)</math> flops, so that the overall computational cost is <math>10(m^3 + n^3) + 2.5(mn^2 + nm^2)</math>.<ref name=":1" />
=== Simplifications and special cases ===
In the special case where <math>B=-A^T</math> and <math>C</math> is symmetric, the solution <math>X</math> will also be symmetric. This symmetry can be exploited so that <math>Y</math> is found more efficiently in step 3 of the algorithm.<ref name=":0" />
== The Hessenberg–Schur algorithm ==
Line 36:
== Alternative approaches ==
For large systems, the <math>\mathcal{O}(m^3 + n^3)</math> cost of the Bartels–Stewart algorithm can be prohibitive. When <math>A</math> and <math>B</math> are sparse or structured, so that linear solves and matrix vector multiplies involving them are efficient, iterative algorithms can potentially perform better. These include projection-based methods, which use [[Krylov subspace method|Krylov subspace]] iterations, methods based on the [[Alternating direction implicit method|alternating direction implicit]] (ADI) iteration, and hybridizations that involve both projection and ADI.<ref>{{Cite journal|last=Simoncini|first=V.|s2cid=17271167|date=2016|title=Computational Methods for Linear Matrix Equations|journal=SIAM Review|language=en-US|volume=58|issue=3|pages=377–441|doi=10.1137/130912839|issn=0036-1445}}</ref>
== References ==
|