Content deleted Content added
simplification for case of N-length segments |
|||
Line 1:
The '''circular convolution''', also known as '''cyclic convolution''', of two aperiodic functions (i.e. [[Schwartz functions]]) occurs when one of them is [[convolution|convolved in the normal way]] with a [[periodic summation]] of the other function. That situation arises in the context of the [[Discrete Fourier transform#Circular convolution theorem and cross-correlation theorem|circular convolution theorem]]. The identical operation can also be expressed in terms of the periodic summations of ''both'' functions
}}▼
==Definitions==
The ''periodic convolution'' of two T-periodic functions, <math>h_T(t)</math> and <math>x_T(t)</math> can be defined as''':'''
:<math>x_T(t) \ \triangleq \ \sum_{k=-\infty}^\infty x(t - kT) = \sum_{k=-\infty}^\infty x(t + kT).</math><ref name=McGillem/>▼
:<math>\int_{t_o}^{t_o+T} h_T(\tau)\cdot x_T(t - \tau)\,d\tau,</math> <ref name=Jeruchim/><ref name=Udayashankara/>
where ''t''<sub>o</sub> is an arbitrary parameter. An alternative definition, in terms of the notation of normal ''linear'' convolution, follows from expressing <math>h_T(t)</math> and <math>x_T(t)</math> as [[periodic summation|periodic summations]] of aperiodic components <math>h</math> and <math>x</math>, i.e.''':'''
|Proof:▼
▲:<math>
Then''':'''
:<math>\int_{t_o}^{t_o+T} h_T(\tau)\cdot x_T(t - \tau)\,d\tau = \int_{-\infty}^\infty h(\tau)\cdot x_T(t - \tau)\,d\tau\ \triangleq\ (h *x_T)(t) = (x * h_T)(t).</math>{{efn-ua
▲|Proof:
:<math>\begin{align}
&\int_{-\infty}^\infty h(\tau)\cdot x_T(t - \tau)\,d\tau \\
Line 23 ⟶ 21:
&\sum_{k=-\infty}^\infty \left[\int_{t_o}^{t_o+T} h(\tau + kT)\cdot x_T(t - \tau -kT)\ d\tau\right] \\
={} &\int_{t_o}^{t_o+T} \left[\sum_{k=-\infty}^\infty h(\tau + kT)\cdot \underbrace{x_T(t - \tau-kT)}_{X_T(t - \tau), \text{ by periodicity}}\right]\ d\tau\\
={} &\int_{t_o}^{t_o+T} \underbrace{\left[\sum_{k=-\infty}^\infty h(\tau + kT)\right]}_{\triangleq \ h_T(\tau)}\cdot x_T(t - \tau)\ d\tau
\end{align}</math>
}}
Both forms can be called ''periodic convolution''.{{efn-la
|[[#refMcGillem|McGillem and Cooper]], p 172 (4-6)
}} The term ''circular convolution''<ref name=Udayashankara/><ref name=Priemer/> arises from the important special case of constraining the non-zero portions of both <math>h</math> and <math>x</math> to the interval <math>[0,T].</math> Then the periodic summation becomes a ''periodic extension''{{efn-la
|[[#refMcGillem|McGillem and Cooper]], p 183 (4-51)
}}, which can also be expressed as a ''circular function''''':'''
:<math>x_T(t) = x(t_{\mathrm{mod}\ T}), \quad -\infty < t < \infty.</math>{{efn-la
|[[#refOppenheim|Oppenheim and Shafer]], p 559 (8.59)
▲}}
And the limits of integration reduce to the length of function <math>h</math>''':'''
:<math>(h *x_T)(t) = \int_{0}^{T} h(\tau)\cdot x((t - \tau)_{\mathrm{mod}\ T})\ d\tau.</math>{{efn-la
|[[#refOppenheim|Oppenheim and Shafer]], p 571 (8.114)
}}{{efn-la
|[[#refMcGillem|McGillem and Cooper]], p 172 (4-5)
}}
== Discrete sequences ==
Line 128 ⟶ 141:
| ___location =India
| isbn =978-8-12-034049-7
<ref name=McGillem>▼
{{cite book▼
| ref=refMcGillem▼
| first1 =Clare D.▼
| last2 =Cooper▼
| first2 =George R.▼
| title =Continuous and Discrete Signal and System Analysis▼
| publisher =Holt, Rinehart and Winston▼
| edition =2▼
| date =1984▼
| isbn =0-03-061703-0▼
}}</ref>
}}
{{refbegin}}
#<li value="
|ref=refOppenheim
|last=Oppenheim
Line 165 ⟶ 164:
|url=https://archive.org/details/discretetimesign00alan
}} Also available at https://d1.amobbs.com/bbs_upload782111/files_24/ourdev_523225.pdf
▲#{{cite book
▲ | ref=refMcGillem
▲ | first1 =Clare D.
▲ | last2 =Cooper
▲ | first2 =George R.
▲ | title =Continuous and Discrete Signal and System Analysis
▲ | publisher =Holt, Rinehart and Winston
▲ | edition =2
▲ | date =1984
▲ | isbn =0-03-061703-0
}}
</li>
|