Triangular matrix: Difference between revisions

Content deleted Content added
Application: do not assume that L is *unit* lower triangular
Line 94:
:<math>\mathbf{U} \mathbf{x} = \mathbf{b}</math>
 
is very easy to solve. The matrix equation ''Lx'' = ''b'' can be written as a system of linear equations
 
:<math>
\begin{matrix}
l_{1,1} x_1 & & x_1 & & & & & & & = & b_1 \\
l_{2,1} x_1 & + & l_{2,2} x_2 & x_2 & & & & = & b_2 \\
\vdots & & \vdots & \ddots & & & \vdots \\
l_{m,1} x_1 & + & l_{m,2} x_2 & + \ldots + & l_{m,m} x_m & = & b_m \\
\end{matrix}
</math>
 
which can be solved by the following recursive relation
:<math> x_1 = \frac{b_1}{l_{1,1}}, </math>
:<math>
:<math> x_2 = \frac{b_2 - l_{2,1} x_1}{l_{2,2}}, </math>
\begin{matrix}
::<math> \vdots </math>
x_1 & = & b_1 \\
x_m:<math> &x_m = & \frac{b_m - \sum_{i=1}^{m-1} l_{m,i}b_ix_i}{l_{m,m}}. </math>
x_2 & = & b_2 - l_{2,1} b_1 \\
& \vdots & \\
x_m & = & b_m - \sum_{i=1}^{m-1} l_{m,i}b_i
\end{matrix}
:</math>
 
A matrix equation with a normedan upper triangular matrix ''U'' can be solved in an analogous way.
 
== See also ==