Hypergeometric function of a matrix argument: Difference between revisions

Content deleted Content added
No edit summary
mNo edit summary
Line 21:
</center>
 
where <math>\kappa\vdash k</math> means <math>\kappa</math> is a [[partition (number theory)|partition]] of <math>k</math>, <math>(a_i)^{(\alpha )}_{\kappa}</math> is the [[Generalized Pochhammer symbol]], and
<math>C_\kappa^{(\alpha )}(X)</math> is the ``C" normalization of the [[Jack function]].
 
Line 47:
 
==The parameter <math>\alpha</math>==
In many publications the parameter <math>\alpha</math> is omitted. yetAlso, in different publications different values of <math>\alpha</math> are being implicitly assumed. For example, in the theory of real random matrices (see, e.g., Muirhead, 1984), <math>\alpha=2</math> whereas in other settings (e.g., in the complex case--see Gross and Richards, 1989), <math>\alpha=1</math>. To make matters worse, in combinatorics researchers often use the parameter <math>\alpha</math> whereas in random matrix theory reserchers tend to prefer a parameter called <math>\beta</math>. Ininstead other disciplines, it isof <math>\alpha/2</math> thatwhich hasis certainused meaningin combinatorics. In either case the connection is simple:
 
The thing to remember is that
:<math>\alpha=\frac{2}{\beta}</math>
 
and care:<math>\alpha=\frac{2}{\beta}</math>.

Care should be exercised as to whether a particular text is using a parameter <math>\alpha</math> or <math>\beta</math> and which the particular value of that parameter is.
 
Typically, in settings involving real random matrices, <math>\alpha=2</math> and thus <math>\beta=1</math>. In settings involving complex random matrices, one has <math>\alpha=1</math> and <math>\beta=2</math>.
Line 61 ⟶ 63:
* K. I. Gross and D. St. P. Richards, "Total positivity, spherical series, and hypergeometric functions of matrix argument", ''J. Approx. Theory'', '''59''', no. 2, 224–246, 1989.
 
* Kaneko, J. Kaneko, "Selberg Integrals and hypergeometric functions associated with Jack polynomials", ''SIAM Journal on Mathematical Analysis'', '''24''', no. 4, 1086-1110, 1993.
 
* Koev, Plamen Koev and Edelman, Alan Edelman, "The efficient evaluation of the hypergeometric function of a matrix argument", ''Mathematics of Computation'', '''75''', no. 254, 833-846, 2006.
 
* Muirhead, Robb Muirhead, ''Aspects of Multivariate Statistical Theory'', John Wiley & Sons, Inc., New York, 1984.