Chaperone code: Difference between revisions

Content deleted Content added
More correct interpretation, Histone code largely the modifications of histone tails that regulate accessibility, TF binding and folding.
Phosphorylation: link, spacing
Line 15:
 
The chaperone code concept posits that combinations of posttranslational modifications at the surface of chaperones, including phosphorylation, acetylation<ref name=":0" />, methylation,<ref>{{Cite journal|last=Jakobsson|first=Magnus E.|last2=Moen|first2=Anders|last3=Bousset|first3=Luc|last4=Egge-Jacobsen|first4=Wolfgang|last5=Kernstock|first5=Stefan|last6=Melki|first6=Ronald|last7=Falnes|first7=Pål Ø.|date=2013-09-27|title=Identification and Characterization of a Novel Human Methyltransferase Modulating Hsp70 Protein Function through Lysine Methylation|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784692/|journal=The Journal of Biological Chemistry|volume=288|issue=39|pages=27752–27763|doi=10.1074/jbc.M113.483248|issn=0021-9258|pmc=3784692|pmid=23921388}}</ref> ubiquitination,<ref>{{Cite journal|last=Kampinga|first=Harm H.|last2=Craig|first2=Elizabeth A.|date=August 2010|title=The Hsp70 chaperone machinery: J-proteins as drivers of functional specificity|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003299/|journal=Nature reviews. Molecular cell biology|volume=11|issue=8|pages=579–592|doi=10.1038/nrm2941|issn=1471-0072|pmc=3003299|pmid=20651708|via=}}</ref> control protein folding/unfolding and protein complex assembly/disassembly by regulation of substrate specificity, activity, subcellular localization and co-factor binding. <ref>{{cite journal |doi=10.1016/j.bbagrm.2013.02.010 |pmid=23459247 |pmc=4492711 |title=Regulation of molecular chaperones through post-translational modifications: Decrypting the chaperone code |journal=Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms |volume=1829 |issue=5 |pages=443–54 |year=2013 |last1=Cloutier |first1=Philippe |last2=Coulombe |first2=Benoit }}</ref><ref>{{cite journal |doi=10.1371/journal.pgen.1003210 |pmid=23349634 |pmc=3547847 |title=A Newly Uncovered Group of Distantly Related Lysine Methyltransferases Preferentially Interact with Molecular Chaperones to Regulate Their Activity |journal=PLOS Genetics |volume=9 |issue=1 |pages=e1003210 |year=2013 |last1=Cloutier |first1=Philippe |last2=Lavallée-Adam |first2=Mathieu |last3=Faubert |first3=Denis |last4=Blanchette |first4=Mathieu |last5=Coulombe |first5=Benoit }}</ref> Because posttranslational modifications are marks that can be added and removed rapidly, they provide an efficient mechanism to explain the plasticity observed in proteome organization during cell growth and development.
 
 
== Phosphorylation ==
 
[[Phosphorylation]] of chaperone proteins can affect their activity. [[Hsp70|HSP70]], a major chaperone protein, was identified in 2012 as a hotspot of phospho-regulation. <ref>{{Cite journal|last=Beltrao|first=Pedro|last2=Albanèse|first2=Véronique|last3=Kenner|first3=Lillian R.|last4=Swaney|first4=Danielle L.|last5=Burlingame|first5=Alma|last6=Villén|first6=Judit|last7=Lim|first7=Wendell A.|last8=Fraser|first8=James S.|last9=Frydman|first9=Judith|last10=Krogan|first10=Nevan J.|date=2012-07-20|title=Systematic Functional Prioritization of Protein Posttranslational Modifications|url=https://www.cell.com/cell/abstract/S0092-8674(12)00706-4|journal=Cell|language=English|volume=150|issue=2|pages=413–425|doi=10.1016/j.cell.2012.05.036|issn=0092-8674|pmid=22817900}}</ref> Subsequently, phosphorylation of chaperone protein HSP70 by a cyclin dependent kinase was shown to be delay [[cell cycle]] progression in yeast and mammals by altering [[Cyclin D1]] stability (a key regulator of the cell cycle). <ref>{{Cite journal|last=Truman|first=Andrew|last2=Kristjansdottir|first2=Kolbrun|last3=Wolfgeher|first3=Donald|last4=Hasin|first4=Naushaba|last5=Polier|first5=Sigrun|last6=Zhang|first6=Hong|last7=Perrett|first7=Sarah|last8=Prodromou|first8=Chrisostomos|last9=Jones|first9=Gary|last10=Kron|first10=Stephen|date=2012-12-07|title=CDK-Dependent Hsp70 Phosphorylation Controls G1 Cyclin Abundance and Cell-Cycle Progression|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778871/|journal=Cell|volume=151|issue=6|pages=1308–1318|doi=10.1016/j.cell.2012.10.051|issn=0092-8674|pmc=3778871|pmid=23217712|via=}}</ref>
 
 
==References==
{{reflist}}