Confluent hypergeometric function: Difference between revisions

Content deleted Content added
m rm |ref=harv; volume=Elsevier → publisher=Elsevier; {{harv}} requires exact author with accents and all authors
Citation bot (talk | contribs)
Alter: volume, url. Add: s2cid, issue, volume, author pars. 1-1. Removed parameters. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Suggested by AManWithNoPlan | All pages linked from cached copy of User:AManWithNoPlan/sandbox2 | via #UCB_webform_linked
Line 58:
===Other equations===
Confluent Hypergeometric Functions can be used to solve the Extended Confluent Hypergeometric Equation whose general form is given as:
:<math>z\frac{d^2w}{dz^2} +(b-z)\frac{dw}{dz} -\left(\sum_{m=0}^M a_m z^m\right)w = 0</math> <ref>{{cite journal|last1=Campos|first1=LMBC|title=On Some Solutions of the Extended Confluent Hypergeometric Differential Equation|journal=Journal of Computational and Applied Mathematics|date=2001|volume=137|publisher=Elsevier|doi=10.1016/s0377-0427(00)00706-8|pages=177–200|doi-access=free}}</ref>
 
Note that for {{math|''M'' {{=}} 0}} or when the summation involves just one term, it reduces to the conventional Confluent Hypergeometric Equation.
Line 229:
* {{dlmf|first=Adri B. Olde|last= Daalhuis|id=13}}
* {{cite book | last1= Erdélyi | first1= Arthur | author1-link= Arthur Erdélyi | last2= Magnus | first2= Wilhelm | author2-link= Wilhelm Magnus | last3= Oberhettinger | first3= Fritz | lastauthoramp= yes | last4= Tricomi | first4= Francesco G. | title= Higher transcendental functions. Vol. I | ___location= New York–Toronto–London | publisher= McGraw–Hill Book Company, Inc. | year= 1953 | mr= 0058756}}
* {{cite journal | last= Kummer | first= Ernst Eduard | authorlink= Ernst Eduard Kummer | title= De integralibus quibusdam definitis et seriebus infinitis | language= Latin | url= http://resolver.sub.uni-goettingen.de/purl?GDZPPN002141329 | format= | journal= [[Journal für die reine und angewandte Mathematik]] | year= 1837 | volume= 1837 | issue= 17 | pages= 228–242 | issn= 0075-4102 | doi=10.1515/crll.1837.17.228| s2cid= 121351583 }}
* {{cite book | last= Slater | first= Lucy Joan | authorlink= Lucy Joan Slater | title= Confluent hypergeometric functions | url= https://archive.org/details/confluenthyperge0000slat | url-access= registration | ___location= Cambridge, UK | publisher= Cambridge University Press | year= 1960 | mr= 0107026}}
* {{cite journal | last= Tricomi | first= Francesco G. | authorlink= Francesco Giacomo Tricomi | title= Sulle funzioni ipergeometriche confluenti | language= Italian | journal= Annali di Matematica Pura ed Applicata |series=Series 4 | year= 1947 | volume= 26 | pages= 141–175 | issn= 0003-4622 | mr= 0029451 | doi=10.1007/bf02415375| s2cid= 119860549 }}
* {{cite book | last= Tricomi | first= Francesco G. | title= Funzioni ipergeometriche confluenti | language= Italian | ___location= Rome | publisher= Edizioni cremonese | year= 1954 | series= Consiglio Nazionale Delle Ricerche Monografie Matematiche | volume= 1 | isbn= 978-88-7083-449-9 | mr= 0076936}}
* {{cite book | lastlast1=Oldham | firstfirst1=K.B. | last2=Myland | first2=J. | last3=Spanier | first3=J. | title=An Atlas of Functions: with Equator, the Atlas Function Calculator | publisher=Springer New York | series=An Atlas of Functions | year=2010 | isbn=978-0-387-48807-3 | url=https://books.google.co.ukcom/books?id=UrSnNeJW10YC&pg=PA75 | access-date=2017-08-23}}
 
==External links==