Content deleted Content added
No edit summary |
Rphysicist (talk | contribs) mNo edit summary |
||
Line 3:
:<math>Z(V, s) = \exp\left(\sum_{m = 1}^\infty \frac{N_m}{m} (q^{-s})^m\right)</math>
where {{math|''N''<sub>''m''</sub>}} is the number of points of {{mvar|''V''}} defined over the finite field extension {{math|'''F'''<sub>''q''<sup>''m''</sup></sub>}} of {{math|'''F'''<sub>''q''</sub>,}} and {{mvar|V}} is a [[non-singular]] {{mvar|n}}-dimensional [[projective algebraic variety]] over the field {{math|'''F'''<sub>''q''</sub>}} with {{mvar|q}} elements.
:<math>
\mathit{Z} (V,u) = \exp
\left( \sum_{m=1}^{\infty} N_m \frac{u^m}{m} \right)
</math>
as the [[formal power series]]
Equivalently, the local zeta function
:<math>
(1)\ \ \mathit{Z} (V,0) = 1 \,
Line 17:
(2)\ \ \frac{d}{du} \log \mathit{Z} (V,u) = \sum_{m=1}^{\infty} N_m u^{m-1}\ .</math>
In other
<!--In [[number theory]], a '''local zeta-function'''
|