Content deleted Content added
Unrotated solution |
→Selecting the appropriate number of factors: deleted unsubstantiated and overly general claims about the relative merits of over- vs. under-factoring |
||
Line 20:
}}
When selecting how many factors to include in a model, researchers must try to balance [[Occam's razor|parsimony]] (a model with relatively few factors) and plausibility (that there are enough factors to adequately account for correlations among measured variables).<ref>{{cite book|last=Fabrigar|first=Leandre R.|title=Exploratory factor analysis|publisher=Oxford University Press|___location=Oxford|isbn=978-0-19-973417-7|author2=Wegener, Duane T.|date=2012-01-12}}</ref>
''Overfactoring'' occurs when too many factors are included in a model
''Underfactoring'' occurs when too few factors are included in a model
There are a number of procedures designed to determine the optimal number of factors to retain in EFA. These include Kaiser's (1960) eigenvalue-greater-than-one rule (or K1 rule),<ref>{{cite journal|last=Kaiser|first=H.F.|title=The application of electronic computers to factor analysis|journal=Educational and Psychological Measurement|year=1960|volume=20|pages=141–151|doi=10.1177/001316446002000116}}</ref> Cattell's (1966) [[scree plot]],<ref name="Cattell, R. B. 1966">Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, I, 245-276.</ref> Revelle and Rocklin's (1979) very simple structure criterion,<ref>{{cite journal | last1 = Revelle | first1 = W. | last2 = Rocklin | first2 = T. | year = 1979 | title = Very simple structure-alternative procedure for estimating the optimal number of interpretable factors | url = | journal = Multivariate Behavioral Research | volume = 14 | issue = 4| pages = 403–414 | doi = 10.1207/s15327906mbr1404_2 | pmid = 26804437 }}</ref> model comparison techniques,<ref>{{cite journal | last1 = Fabrigar | first1 = Leandre R. | last2 = Wegener | first2 = Duane T. | last3 = MacCallum | first3 = Robert C. | last4 = Strahan | first4 = Erin J. | year = 1999 | title = Evaluating the use of exploratory factor analysis in psychological research. | url = | journal = Psychological Methods | volume = 4 | issue = 3| pages = 272–299 | doi = 10.1037/1082-989X.4.3.272 }}</ref> Raiche, Roipel, and Blais's (2006) acceleration factor and optimal coordinates,<ref>Raiche, G., Roipel, M., & Blais, J. G.|Non graphical solutions for the Cattell’s scree test. Paper presented at The International Annual Meeting of the Psychometric Society, Montreal|date=2006|Retrieved December 10, 2012 from {{cite web |url=https://ppw.kuleuven.be/okp/_pdf/Raiche2013NGSFC.pdf |title=Archived copy |accessdate=2013-05-03 |url-status=live |archiveurl=https://web.archive.org/web/20131021052759/https://ppw.kuleuven.be/okp/_pdf/Raiche2013NGSFC.pdf |archivedate=2013-10-21 }}</ref> Velicer's (1976) minimum average partial,<ref name=Velicer>{{cite journal|last=Velicer|first=W.F.|title=Determining the number of components from the matrix of partial correlations|journal=Psychometrika|year=1976|volume=41|issue=3|pages=321–327|doi=10.1007/bf02293557}}</ref> Horn's (1965) [[parallel analysis]], and Ruscio and Roche's (2012) comparison data.<ref name =Ruscio>{{cite journal|last=Ruscio|first=J.|author2=Roche, B.|title=Determining the number of factors to retain in an exploratory factor analysis using comparison data of a known factorial structure|journal=Psychological Assessment|year=2012|volume=24|issue=2|pages=282–292|doi=10.1037/a0025697|pmid=21966933}}</ref> Recent simulation studies assessing the robustness of such techniques suggest that the latter five can better assist practitioners to judiciously model data.<ref name =Ruscio/> These five modern techniques are now easily accessible through integrated use of IBM SPSS Statistics software (SPSS) and R (R Development Core Team, 2011). See Courtney (2013)<ref name="pareonline.net">Courtney, M. G. R. (2013). Determining the number of factors to retain in EFA: Using the SPSS R-Menu v2.0 to make more judicious estimations. ''Practical Assessment, Research and Evaluation'', 18(8). Available online:
|