Content deleted Content added
Library sort cannot be used as an online algorithm without modification. Removed that claim and explained it. |
Fixed typo |
||
Line 19:
Compared to basic insertion sort, the drawback of library sort is that it requires extra space for the gaps. The amount and distribution of that space would be implementation dependent. In the paper the size of the needed array is ''(1 + ε)n'',<ref name="definition" /> but with no further recommendations on how to choose ε. Moreover, it is neither adaptive nor stable. In order to warrant the with-high-probability time bounds, it requires to randomly permute the input, what changes the relative order of equal elements and shuffles any presorted input. Also, the algorithm uses binary search to find the insertion point for each element, which does not take profit of presorted input.
Another drawback is that it cannot be run as an [[online algorithm]], because it is not possible to randomly
One weakness of [[insertion sort]] is that it may require a high number of swap operations and be costly if memory write is expensive. Library sort may improve that somewhat in the insertion step, as fewer elements need to move to make room, but is also adding an extra cost in the rebalancing step. In addition, locality of reference will be poor compared to [[mergesort]] as each insertion from a random data set may access memory that is no longer in cache, especially with large data sets.
|