Content deleted Content added
Citation bot (talk | contribs) Add: s2cid, author pars. 1-1. Removed parameters. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Suggested by Headbomb | All pages linked from cached copy of Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | via #UCB_webform_linked 35/45 |
m Task 18 (cosmetic): eval 17 templates: del empty params (2×); hyphenate params (7×); |
||
Line 1:
[[Digital signature]]s are a means to protect [[Digital data|digital information]] from intentional modification and to authenticate the source of digital information. [[Public key cryptography]] provides a rich set of different cryptographic algorithms the create digital signatures. However, the primary public key signatures currently in use ([[RSA (cryptosystem)|RSA]] and [[Elliptic Curve Digital Signature Algorithm|Elliptic Curve Signatures)]] will become completely insecure if scientists are ever able to build a moderately sized [[quantum computer]].<ref name=":2">{{Cite web|title = ETSI - Quantum-Safe Cryptography|url = http://www.etsi.org/technologies-clusters/technologies/quantum-safe-cryptography|website = ETSI|
== Background ==
Developments in [[quantum computing]] over the past decade and the optimistic prospects for real quantum computers within 20 years have begun to threaten the basic cryptography that secures the internet.<ref>{{Cite web|title = Quantum computing breakthrough claim from IBM|url = http://www.cio.co.uk/news/r-and-d/quantum-computing-breakthrough-claim-from-ibm-3609914/|
One of the most widely used public key algorithm used to create [[digital signatures]] is known as [[RSA (cryptosystem)|RSA]]. Its security is based on the classical difficulty of factoring the product of two large and unknown primes into the constituent primes. The [[integer factorization problem]] is believed to be intractable on any conventional computer if the primes are chosen at random and are sufficiently large. However, to factor the product of two n-bit primes, a quantum computer with roughly 6n bits of logical [[qubit]] memory and capable of executing a program known as [[Shor's algorithm|Shor’s algorithm]] will easily accomplish the task.<ref>{{Cite journal|title = Oversimplifying quantum factoring|journal = Nature|date = July 11, 2013|issn = 0028-0836|pages = 163–165|volume = 499|issue = 7457|doi = 10.1038/nature12290|first1 = John A.|last1 = Smolin|first2 = Graeme|last2 = Smith|first3 = Alexander|last3 = Vargo|pmid=23846653|arxiv = 1301.7007|bibcode = 2013Natur.499..163S|s2cid = 4422110}}</ref> Shor's algorithm can also quickly break digital signatures based on what is known as the [[discrete logarithm]] problem and the more esoteric [[Elliptic curve cryptography|elliptic curve discrete logarithm]] problem. In effect, a relatively small quantum computer running Shor's algorithm could quickly break all of the digital signatures used to ensure the privacy and integrity of information on the internet today.
Even though we do not know when a quantum computer to break RSA and other digital signature algorithms will exist, there has been active research over the past decade to create cryptographic algorithms which remain secure even when an attacker has the resources of a quantum computer at their disposal.<ref name=":2" /><ref name=":4">{{Cite web|title = Introduction|url = http://pqcrypto.org/|website = pqcrypto.org|
The creators of the Ring based Learning with Errors (RLWE) basis for cryptography believe that an important feature of these algorithms based on Ring-Learning with Errors is their provable reduction to known hard problems.<ref>{{Cite journal|title = On ideal lattices and learning with errors over rings|journal = In Proc. Of EUROCRYPT, Volume 6110 of LNCS|date = 2010|pages = 1–23|first1 = Vadim|last1 = Lyubashevsky|first2 = Chris|last2 = Peikert|first3 = Oded|last3 = Regev|citeseerx = 10.1.1.297.6108}}</ref><ref>{{Cite web|title = What does GCHQ's "cautionary tale" mean for lattice cryptography?|url = http://www.cc.gatech.edu/~cpeikert/soliloquy.html|website = www.cc.gatech.edu|
The first RLWE based signature was developed by Lyubashevsky in his paper "Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures"<ref name=":5">{{Cite book|publisher = Springer Berlin Heidelberg|date = 2009-01-01|isbn = 978-3-642-10365-0|pages = 598–616|series = Lecture Notes in Computer Science|first = Vadim|last = Lyubashevsky|editor-first = Mitsuru|editor-last = Matsui|doi = 10.1007/978-3-642-10366-7_35|title = Advances in Cryptology – ASIACRYPT 2009|volume = 5912|chapter = Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures}}</ref> and refined in "Lattice Signatures Without Trapdoors" in 2011.<ref name=":1">{{Cite journal|title = Lattice Signatures Without Trapdoors|url = http://eprint.iacr.org/2011/537|date = 2011|first = Vadim|last = Lyubashevsky}}</ref> A number of refinements and variants have followed. This article highlights the fundamental mathematical structure of RLWE signatures and follows the original Lyubashevsky work and the work of Guneysu, Lyubashevsky and Popplemann ([https://web.archive.org/web/20140518004537/http://www.di.ens.fr/~lyubash/papers/signaturechess.pdf GLP]).<ref name=":0" /> This presentation is based on a 2017 update to the GLP scheme called GLYPH.<ref name=":3">{{Cite web|url=https://eprint.iacr.org/2017/766.pdf|title=GLYPH: A New Instantiation of the GLP Digital Signature Scheme|last=Chopra|first=Arjun|date=2017|website=International Association of Cryptographic Research eprint Archive|archive-url=https://eprint.iacr.org|archive-date=26 August 2017
A RLWE-SIG works in the quotient [[ring of polynomials]] modulo a degree n polynomial Φ(x) with coefficients in the [[finite field]] Z<sub>q</sub> for an odd prime q ( i.e. the ring Z<sub>q</sub>[x]/Φ(x) ).<ref name=":1" /> Multiplication and addition of polynomials will work in the usual fashion with results of a multiplication reduced mod Φ(x). For this presentation a typical polynomial is expressed as:
|