Differentiable vector-valued functions from Euclidean space: Difference between revisions
Content deleted Content added
Gsquaredxc (talk | contribs) m v2.03b - WP:WCW project (Template contains useless word template:) |
Fix, reworded, and copy editing |
||
Line 1:
In the field of [[Functional Analysis]], it is possible to generalize the notion of [[derivative (mathematics)|derivative]] to infinite dimensional [[topological vector space]]s (TVSs) in multiple ways.
But when the ___domain of TVS-value functions is a subset of finite-dimensional [[Euclidean space]] then the number of generalizations of the derivative is much more limited and derivatives are more well behaved.
This article presents the theory of ''k''-times continuously differentiable functions on an open subset <math>\Omega</math> of Euclidean space <math>\
All vector spaces will be assumed to be over the field <math>\mathbb{F},</math>
== Continuously differentiable vector-valued functions ==
Throughout, let <math>k \in \{ 0, 1, \ldots, \infty \}</math> and let <math>\Omega</math> be either:
# an open subset of <math>\mathbb{R}^n,</math>
# a [[locally compact]] topological space, in which ''k'' can only be 0,
and let <math>Y</math> be a [[topological vector space]] (TVS).
::<math>\lim_{p \to p^0, p \in \operatorname{Dom} f} \frac{f(p) - f\left( p^0 \right) - \sum_{i=1}^{n} \left( p_i - p^0_i \right) e_i}{\left\| p - p^0 \right\|_2} = 0</math> in ''Y''
:where <math>p = \left( p_1, \ldots, p_n \right)</math>.▼
Note that if ''f'' is differentiable at a point then it is continuous at that point.{{sfn | Trèves | 2006 | pp=412-419}} ▼
▲
Say that ''f'' is <math>C^0</math> if it is continuous.
If ''f'' is differentiable at every point in some set <math>S \subseteq \Omega</math> then we say that ''f'' is '''differentiable in
If ''f'' is differentiable at every point of its ___domain and if each of its partial derivatives is a continuous function then we say that ''f'' is '''continuously differentiable''' or <math>C^1.</math>
Having defined what it means for a function ''f'' to be <math>C^k</math> (or
Say that ''f'' is <math>C^{\infty},</math>
If <math>f : \Omega \to Y</math> is any function then its '''[[support (mathematics)|support]]''' is the closure (in <math>\Omega</math>) of the set <math>\{ x \in \operatorname{Dom} f : f(x) \neq 0 \}.</math>
== Spaces of C<sup>k</sup> vector-valued functions ==
Line 27 ⟶ 29:
=== Space of C<sup>k</sup> functions ===
For any <math>k = 0, 1, \ldots, \infty,</math>
Let <math>C^{k}\left( \Omega \right)</math> denote <math>C^{k}\left( \Omega; \mathbb{F} \right)</math> and <math>C_c^{k}\left( \Omega \right)</math> denote <math>C_c^{k}\left( \Omega; \mathbb{F} \right).</math>
Suppose <math>\Omega_1 \subseteq \Omega_2 \subseteq \cdots</math> is a sequence of [[relatively compact]] open subsets of <math>\Omega</math> whose union is <math>\Omega</math> and that satisfy <math>\overline{\Omega_i} \subseteq \Omega_{i+1}</math> for all ''i''.
Suppose that <math>\left( V_{\alpha} \right)_{\alpha \in A}</math> is a basis of neighborhoods of the origin in ''Y''.
Then for any integer <math>l < k + 1,</math>
:
form a basis of neighborhoods of the origin for <math>C^{k}\left( \Omega; Y \right)</math> as ''i'', ''l'', and <math>\alpha \in A</math> vary in all possible ways.
If <math>\Omega</math> is a countable union of compact subsets and ''Y'' is a [[Fréchet space]], then so is <math>C^{k}\left( \Omega; Y \right).</math>
Note that <math>\mathcal{U}_{i, l, \alpha}</math> is convex whenever <math>U_{\alpha}</math> is convex.
If ''Y'' is metrizable (resp. complete, locally convex, Hausdorff) then so is <math>C^{k}\left( \Omega; Y \right).</math>
If <math>\left( p_{\alpha} \right)_{\alpha \in A}</math> is a basis of continuous seminorms for ''Y'' then a basis of continuous seminorms on <math>C^{k}\left( \Omega; Y \right)</math> is:
:<math>\mu_{i, l, \alpha}\left( f \right) := \sup_{y \in \Omega_i} \left( \sum_{| q | \leq l} p_{\alpha}\left( \left( \partial / \partial p \right)^{q} f (p) \right) \right)</math>
as ''i'', ''l'', and <math>\alpha \in A</math> vary in all possible ways.{{sfn | Trèves | 2006 | pp=412-419}}
If <math>\Omega</math> is a compact space and ''Y'' is a Banach space, then <math>C^0\left( \Omega; Y \right)</math> becomes a Banach space normed by <math>\| f \| := \sup_{\omega \in \Omega} \| f(\omega) \|.</math>
=== Space of C<sup>k</sup> functions with support in a compact subset ===
We now duplicate the definition of the topology of the [[distribution (mathematics)|space of test functions]].
For any compact subset <math>K \subseteq \Omega,</math>
Let <math>C^{k}\left( K \right)</math> denote <math>C^{k}\left( K; \mathbb{F} \right).</math>
Note that for any two compact subsets <math>K_1 \subseteq K_2 \subseteq \Omega,</math>
=== Space of compactly support C<sup>k</sup> functions ===
For any compact subset <math>K \subseteq \Omega,</math>
The spaces <math>C^{k}\left( K; Y \right)</math> and maps <math>\operatorname{In}_{K_1}^{K_2}</math> form a [[direct limit|direct system]] (directed by the compact subsets of <math>\Omega</math>) whose limit in the category of TVSs is <math>C_c^{k}\left( \Omega; Y \right)</math> together with the natural injections <math>\operatorname{In}_{K}.</math>
The spaces <math>C^{k}\left( \overline{\Omega_i}; Y \right)</math> and maps <math>\operatorname{In}_{\overline{\Omega_i}}^{\overline{\Omega_j}}</math> also form a [[direct limit|direct system]] (directed by the total order <math>\mathbb{N}</math>) whose limit in the category of TVSs is <math>C_c^{k}\left( \Omega; Y \right)</math> together with the natural injections <math>\operatorname{In}_{\overline{\Omega_i}}.</math>
Each natural embedding <math>\operatorname{In}_{K}</math> is an embedding of TVSs.
A subset ''S'' of <math>C_c^{k}\left( \Omega; Y \right)</math> is a neighborhood of the origin in <math>C_c^{k}\left( \Omega; Y \right)</math> if and only if <math>S \cap C^{k}\left( K; Y \right)</math> is a neighborhood of the origin in <math>C^{k}\left( K; Y \right)</math> for every compact <math>K \subseteq \Omega.</math>
This direct limit topology on <math>C_c^{\infty}\left( \Omega \right)</math> is known as the '''canonical LF topology'''.
If ''Y'' is a Hausdorff locally convex space, ''T'' is a TVS, and <math>u : C_c^{k}\left( \Omega; Y \right) \to T</math> is a linear map, then ''u'' is continuous if and only if for all compact <math>K \subseteq \Omega,</math>
=== Properties ===
Let ''m'' be a positive integer and let <math>\Delta</math> be an open subset of <math>\mathbb{R}^{m}.</math> Given <math>\phi \in C^{k}\left(\Omega \times \Delta \right),</math>
and let <math>I_k\left( \phi \right) : \Delta \to C^{k}\left( \Omega \right)</math> be defined by <math>I_k\left( \phi \right)(y) := \phi_y.</math>
Then <math>I_{\infty} : C^{\infty}\left( \Omega \times \Delta \right) \to C^{\infty}\left( \Delta; C^{\infty}\left( \Omega \right) \right)</math> is a (surjective) isomorphism of TVSs.
Furthermore, the restriction <math>I_{\infty}\big\vert_{C_c^{\infty}\left( \Omega \times \Delta \right)} : C_c^{\infty}\left( \Omega \times \Delta \right) \to C_c^{\infty}\left( \Delta; C_c^{\infty}\left( \Omega \right) \right)</math> is an isomorphism of TVSs when <math>C_c^{\infty}\left( \Omega \times \Delta \right)</math> has its canonical LF topology.
}}
Let ''Y'' be a Hausdorff locally convex space. For every continuous linear form <math>y^{\prime} \in Y</math> and every <math>f \in C^{\infty}\left( \Omega; Y \right),</math>
Then <math>J_{y^{\prime}} : C^{\infty}\left( \Omega; Y \right) to C^{\infty}\left( \Omega \right)</math> is a continuous linear map;
and furthermore, the restriction <math>J_{y^{\prime}}\big\vert_{C_c^{\infty}\left( \Omega; Y \right)} : C_c^{\infty}\left( \Omega; Y \right) \to C^{\infty}\left( \Omega \right)</math> is also continuous (where <math>C_c^{\infty}\left( \Omega; Y \right)</math> has the canonical LF topology).
}}
== Identification as a tensor product ==
Suppose henceforth that ''Y'' is a Hausdorff space.
Given a function <math>f \in C^{k}\left( \Omega \right)</math> and a vector <math>y \in Y,</math>
This defines a bilinear map <math>\otimes : C^{k}\left( \Omega \right) \times Y \to C^{k}\left( \Omega; Y \right)</math> into the space of functions whose image is contained in a finite-dimensional vector subspace of ''Y'';
this bilinear map turns this subspace into a tensor product of <math>C^{k}\left( \Omega \right)</math> and ''Y'', which we will denote by <math>C^{k}\left( \Omega \right) \otimes Y.</math>
Furthermore, if <math>C_c^{k}\left( \Omega \right) \otimes Y</math> denotes the vector subspace of <math>C^{k}\left( \Omega \right) \otimes Y</math> consisting of all functions with compact support, then <math>C_c^{k}\left( \Omega \right) \otimes Y</math> is a tensor product of <math>C_c^{k}\left( \Omega \right)</math> and ''Y''.{{sfn | Trèves | 2006 | pp=412-419}}
If ''X'' is locally compact then <math>C_c^{0}\left( \Omega \right) \otimes Y</math> is dense in <math>C^0\left( \Omega; X \right)</math> while if ''X'' is an open subset of <math>\mathbb{R}^{n}</math> then <math>C_c^{\infty}\left( \Omega \right) \otimes Y</math> is dense in <math>C^{k}\left( \Omega; X \right).</math>
{{math theorem|name=Theorem|note=|style=|math_statement=
}}
== See also ==
*
*
== References ==
{{reflist|group=note}}
{{reflist}}
== Bibliography ==▼
* {{Diestel The Metric Theory of Tensor Products Grothendieck's Résumé Revisited}} <!-- {{sfn | Diestel | 2008 | p=}} -->
▲==Bibliography==
* {{
* {{Grothendieck Produits Tensoriels Topologiques et Espaces Nucléaires}} <!-- {{sfn | Grothendieck | 1955 | p=}} -->
* {{Khaleelulla Counterexamples in Topological Vector Spaces}} <!-- {{sfn | Khaleelulla | {{{year| 1982 }}} | p=}} -->
* {{Narici Beckenstein Topological Vector Spaces|edition=2}} <!-- {{sfn | Narici | 2011 | p=}} -->
* {{Hogbe-Nlend Moscatelli Nuclear and Conuclear Spaces}} <!-- {{sfn | Hogbe-Nlend | Moscatelli | 1981 | p=}} -->
* {{Pietsch Nuclear Locally Convex Spaces|edition=2}} <!-- {{sfn | Pietsch | 1979 | p=}} -->
* {{Ryan Introduction to Tensor Products of Banach Spaces|edition=1}} <!-- {{sfn | Ryan | 2002 | p=}} -->
* {{
▲* {{Schaefer Wolff Topological Vector Spaces|edition=2}} <!-- {{sfn | Schaefer | 1999 | p=}} -->
* {{Trèves François Topological vector spaces, distributions and kernels}} <!-- {{sfn | Trèves | 2006 | p=}} -->
* {{
{{Functional analysis}}
|