Content deleted Content added
grammar error |
|||
Line 13:
==The Monti consensus clustering algorithm==
The Monti consensus clustering algorithm<ref>{{Cite journal|last1=Monti|first1=Stefano|last2=Tamayo|first2=Pablo|last3=Mesirov|first3=Jill|last4=Golub|first4=Todd|date=2003-07-01|title=Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data|journal=Machine Learning|language=en|volume=52|issue=1|pages=91–118|doi=10.1023/A:1023949509487|issn=1573-0565|doi-access=free}}</ref> is one of the most popular consensus clustering algorithms and is used to determine the number of clusters, <math>K</math>. Given a dataset of <math>N</math> total number of points to cluster, this algorithm works by resampling and clustering the data, for each <math>K</math> and a <math>
More specifically, given a set of points to cluster, <math>D=\{e_1,e_2,...e_N\}</math>, let <math>D^1,D^2,...,D^H</math> be the list of <math>H</math> pertubed (resampled) datasets of the original dataset <math>D</math>, and let <math>M^h</math> denote the <math>NXN</math> connectivity matrix resulting from applying a clustering algorithm to the dataset <math>D^h</math>. The entries of <math>M^h</math> are defined as follows:
Line 19:
<math>M^h(i,j)= \begin{cases} 1, & \text{if}\text{ points i and j belong to the same cluster} \\ 0, & \text{otherwise} \end{cases}</math>
Let <math>I^h</math> be the <math>
<math>C(i,j)=\left ( \frac{\textstyle \sum_{h=1}^H M^h(i,j) \displaystyle}{\sum_{h=1}^H I^h(i,j)} \right )</math>
|