Cantor's first set theory article: Difference between revisions

Content deleted Content added
A misconception about Cantor's work: Very small wording change
Paolini (talk | contribs)
Tag: Reverted
Line 94:
! style="background: f5f5f5;" |'''Proof that for all&nbsp;''n''{{space|hair|2}}: {{nowrap|{{space|thin|2}}''x''<sub>''n''</sub>&nbsp;{{space|hair|2}}∉ (''a''<sub>''n''</sub>,&nbsp;''b''<sub>''n''</sub>)}}'''&nbsp;{{space|thin|2}}
|- style="text-align: left; vertical-align: top; background: white"
| style="padding-left: 1em; padding-right: 1em" | This [[lemma (mathematics)|lemma]] is used by cases 2 and 3. It is implied by the stronger lemma: For all&nbsp;''n'', (''a''<sub>''n''</sub>,&nbsp;''b''<sub>''n''</sub>) excludes ''x''<sub>1</sub>,&nbsp;...,&nbsp;''x''<sub>2''n''</sub>. This is proved by [[mathematical induction|induction]]. Basis step: Since the [[Endpoints (interval)|endpoints]] of (''a''<sub>1</sub>,&nbsp;''b''<sub>1</sub>) are ''x''<sub>''1''</sub> and ''x''<sub>''2''</sub> and an open interval excludes its endpoints, (''a''<sub>1</sub>,&nbsp;''b''<sub>1</sub>) excludes ''x''<sub>1</sub>,&nbsp;''x''<sub>2</sub>. Inductive step: Assume that (''a''<sub>''n''</sub>,&nbsp;''b''<sub>''n''</sub>) excludes ''x''<sub>1</sub>,&nbsp;...,&nbsp;''x''<sub>2''n''</sub>. Since (''a''<sub>''n''+1</sub>,&nbsp;''b''<sub>''n''+1</sub>) is a subset of (''a''<sub>''n''</sub>,&nbsp;''b''<sub>''n''</sub>) and its endpoints are ''x''<sub>2''nk''+1</sub> and ''x''<sub>2''nj''+2</sub> with indices ''j'',''k''&gt;2''n'' the interval (''a''<sub>''n''+1</sub>,&nbsp;''b''<sub>''n''+1</sub>) excludes ''x''<sub>1</sub>,&nbsp;...,&nbsp;''x''<sub>2''n''</sub> and ''x''<sub>2''n''+1</sub>,&nbsp;''x''<sub>2''n''+2</sub>. Hence, for all&nbsp;''n'', (''a''<sub>''n''</sub>,&nbsp;''b''<sub>''n''</sub>) excludes ''x''<sub>1</sub>,&nbsp;...,&nbsp;''x''<sub>2''n''</sub>. Therefore, for all&nbsp;''n'', ''x''<sub>''n''</sub>&nbsp;∉&nbsp;(''a''<sub>''n''</sub>,&nbsp;''b''<sub>''n''</sub>).{{efn-ua|Cantor does not prove this lemma. In a footnote for case 2, he states that ''x''<sub>''n''</sub> does ''not'' lie in the interior of the interval [''a''<sub>''n''</sub>,&nbsp;''b''<sub>''n''</sub>].<ref name=Ewald842 /> This proof comes from [[#Cantor's 1879 proof|his 1879 proof]], which contains a more complex inductive proof that demonstrates several properties of the intervals generated, including the property proved here.}}
|}
{{Anchor|Case3}}[[File:Cantor's first uncountability proof Case 3 svg.svg|thumb|350px|alt=Illustration of case 3. Real line containing [''a'',&nbsp;''b''] that contains nested intervals (''a''<sub>''n''</sub>,&nbsp;''b''<sub>''n''</sub>) for ''n''&nbsp;=&nbsp;1 to ∞. These intervals converge to the closed interval [a<sub>∞</sub>,&nbsp;b<sub>∞</sub>]. The number y is in this interval.|Case 3: ''a''<sub>∞</sub> < ''b''<sub>∞</sub>]]