Content deleted Content added
m Task 18 (cosmetic): eval 2 templates: del empty params (2×); |
m v2.04b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation) |
||
Line 210:
*MARS models are simple to understand and interpret.<ref name=":0">{{Cite book|title=Applied Predictive Modeling|last=Kuhn|first=Max|last2=Johnson|first2=Kjell|date=2013|publisher=Springer New York|isbn=9781461468486|___location=New York, NY|language=en|doi=10.1007/978-1-4614-6849-3}}</ref> Compare the equation for ozone concentration above to, say, the innards of a trained [[Artificial neural network|neural network]] or a [[random forest]].
*MARS can handle both continuous and categorical data.<ref>[[Friedman, J. H.]] (1993) ''Estimating Functions of Mixed Ordinal and Categorical Variables Using Adaptive Splines'', New Directions in Statistical Data Analysis and Robustness (Morgenthaler, Ronchetti, Stahel, eds.), Birkhauser</ref> MARS tends to be better than recursive partitioning for numeric data because hinges are more appropriate for numeric variables than the piecewise constant segmentation used by recursive partitioning.
*Building MARS models often requires little or no data preparation.<ref name=":0" />
*MARS (like recursive partitioning) does automatic [[Feature selection|variable selection]] (meaning it includes important variables in the model and excludes unimportant ones). However, there can be some arbitrariness in the selection, especially when there are correlated predictors, and this can affect interpretability<ref name=":0" />
*MARS models tend to have a good bias-variance trade-off. The models are flexible enough to model non-linearity and variable interactions (thus MARS models have fairly low bias), yet the constrained form of MARS basis functions prevents too much flexibility (thus MARS models have fairly low variance).
|