Content deleted Content added
added text, links, citations and figures |
Changed section Attributes to Characteristics |
||
Line 1:
{{AfC submission|t||ts=20201214210457|u=Pjwiktor|ns=118|demo=}}<!-- Important, do not remove this line before article has been created. -->
Cartesian parallel manipulators move a platform using [[Parallel manipulator|parallel]] connected kinematic [[Linkage (mechanical)|linkages]] (`limbs' or `legs') lined up with a [[Cartesian coordinate system]]<ref>{{Citation|last=Perler|first=Dominik|title=Descartes, René: Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les sciences|date=2020|url=http://dx.doi.org/10.1007/978-3-476-05728-0_9538-1|work=Kindlers Literatur Lexikon (KLL)|pages=1–3|place=Stuttgart|publisher=J.B. Metzler|isbn=978-3-476-05728-0|access-date=2020-12-14}}</ref>. Multiple limbs connect the moving platform to a base. Each limb is driven by a linear [[actuator]] and the linear actuators are mutually perpendicular
==
Cartesian parallel manipulators are in the intersection of two broader categories of manipulators: [[Cartesian coordinate robot|Cartesian]] and [[Parallel manipulator|parallel]]. Cartesian manipulators are driven by mutually perpendicular linear actuators. They generally have a one-to-one correspondence between the linear positions of the actuators and the ''X, Y, Z'' position coordinates of the moving platform, making them easy to control. Most commonly, [[Cartesian coordinate robot|Cartesian manipulators]] are [[Serial manipulator|serial]]-connected; i.e., they consist of a single kinematic linkage chain. On the other hand, Cartesian parallel manipulators are parallel-connected, providing inherent advantages in terms of stiffness<ref>{{Cite journal|last=Geldart|first=M|last2=Webb|first2=P|last3=Larsson|first3=H|last4=Backstrom|first4=M|last5=Gindy|first5=N|last6=Rask|first6=K|date=2003|title=A direct comparison of the machining performance of a variax 5 axis parallel kinetic machining centre with conventional 3 and 5 axis machine tools|url=http://dx.doi.org/10.1016/s0890-6955(03)00119-6|journal=International Journal of Machine Tools and Manufacture|volume=43|issue=11|pages=1107–1116|doi=10.1016/s0890-6955(03)00119-6|issn=0890-6955|via=}}</ref>, precision<ref>{{Cite journal|last=|first=|date=1997|title=Vibration control for precision manufacturing using piezoelectric actuators|url=http://dx.doi.org/10.1016/s0141-6359(97)81235-4|journal=Precision Engineering|volume=20|issue=2|pages=151|doi=10.1016/s0141-6359(97)81235-4|issn=0141-6359|via=}}</ref>, dynamic performance<ref>R. Clavel, inventor, S.A. SovevaSwitzerland, assignee. Device for the movement and positioning of an element in space, USA patent number, 4,976,582 (1990)</ref> <ref>{{Cite journal|last=Prempraneerach|first=Pradya|date=2014|title=Delta parallel robot workspace and dynamic trajectory tracking of delta parallel robot|url=http://dx.doi.org/10.1109/icsec.2014.6978242|journal=2014 International Computer Science and Engineering Conference (ICSEC)|publisher=IEEE|volume=|pages=|doi=10.1109/icsec.2014.6978242|isbn=978-1-4799-4963-2|via=}}</ref>and supporting heavy loads<ref>
Stewart D. A Platform with Six Degrees of Freedom. Proceedings of the Institution of Mechanical Engineers. 1965;180(1):371-386. doi:10.1243/PIME_PROC_1965_180_029_02
</ref>.
== Configurations ==
Various types of Cartesian parallel manipulators are summarized here. Only fully parallel mechanisms are included
=== Multipteron family ===
Members of the Multipteron <ref>{{Cite journal|last=Gosselin|first=Clement M.|last2=Masouleh|first2=Mehdi Tale|last3=Duchaine|first3=Vincent|last4=Richard|first4=Pierre-Luc|last5=Foucault|first5=Simon|last6=Kong|first6=Xianwen|title=Parallel Mechanisms of the Multipteron Family: Kinematic Architectures and Benchmarking|url=http://dx.doi.org/10.1109/robot.2007.363045|journal=Proceedings 2007 IEEE International Conference on Robotics and Automation|publisher=IEEE|volume=|pages=|doi=10.1109/robot.2007.363045|isbn=1-4244-0602-1|via=}}</ref> family of manipulators have either 3, 4, 5 or 6 degrees of freedom (DoF). The Tripteron 3-DoF member has three translation ''3T'' degrees of freedom, with the subsequent members of the Multipteron family each adding a rotational ''R'' degree of freedom. Each members has mutually perpendicular linear actuators connected to a fixed base. The moving platform is typically attached to the linear actuators through three geometrically parallel revolute ''R'' [[Kinematic pair|joints]].
==== Tripteron ''3T'' ====
Line 17 ⟶ 21:
==== Qudrupteron ''3T1R'' ====
[[File:Quadrupteron.png|thumb|Quadrupteron|link=Special:FilePath/Quadrupteron.png]]
The Qudrupteron<ref>{{Cite journal|last=Gosselin|first=C|date=2009-01-06|title=Compact dynamic models for the tripteron and quadrupteron parallel manipulators|url=http://dx.doi.org/10.1243/09596518jsce605|journal=Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering|volume=223|issue=1|pages=1–12|doi=10.1243/09596518jsce605|issn=0959-6518}}</ref> has ''3T1R'' DoF with (''3<u>P</u>RRU)(<u>P</u>RRR)'' joint topology.
|