Cartesian parallel manipulators: Difference between revisions

Content deleted Content added
Pjwiktor (talk | contribs)
Changed section Attributes to Characteristics
Pjwiktor (talk | contribs)
replaced image files for Tripteron and Quadrupteron. Deleted image files of Pentapteron and Hexapteron. Fixed some typographical errors.
Line 1:
{{AfC submission|t||ts=20201214210457|u=Pjwiktor|ns=118|demo=}}<!-- Important, do not remove this line before article has been created. -->
 
Cartesian parallel manipulators move a platform using [[Parallel manipulator|parallel]] connected kinematic [[Linkage (mechanical)|linkages]] (`limbs' or `legs') lined up with a [[Cartesian coordinate system]]<ref>{{Citation|last=Perler|first=Dominik|title=Descartes, René: Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les sciences|date=2020|url=http://dx.doi.org/10.1007/978-3-476-05728-0_9538-1|work=Kindlers Literatur Lexikon (KLL)|pages=1–3|place=Stuttgart|publisher=J.B. Metzler|isbn=978-3-476-05728-0|access-date=2020-12-14}}</ref>. Multiple limbs connect the moving platform to a base. Each limb is driven by a linear [[actuator]] and the linear actuators are mutually perpendicular. The term `parallel' here refers to the way that the kinematic linkages are put together, it does not connote [[Parallel (geometry)|geometric parallelism]]; i.e., equidistant lines. Manipulators may also be called `robots' or `mechanisms'.
 
== CharacteristicsDescription ==
Cartesian parallel manipulators are in the intersection of two broader categories of manipulators: [[Cartesian coordinate robot|Cartesian]] and [[Parallel manipulator|parallel]]. Cartesian manipulators are driven by mutually perpendicular linear actuators. They generally have a one-to-one correspondence between the linear positions of the actuators and the ''X, Y, Z'' position coordinates of the moving platform, making them easy to control. Most commonly, [[Cartesian coordinate robot|Cartesian manipulators]] are [[Serial manipulator|serial]]-connected; i.e., they consist of a single [[Linkage (mechanical)|kinematic linkage]] chain. On the other hand, Cartesian parallel manipulators are parallel-connected, providing inherentinnate advantages<ref>Z. Pandilov, V. Dukovski, Comparison of the characteristics between serial and parallel robots, Acta Technica Corviniensis-Bulletin of Engineering, Volume 7, Issue 1, Pages 143-160</ref> in terms of stiffness<ref>{{Cite journal|last=Geldart|first=M|last2=Webb|first2=P|last3=Larsson|first3=H|last4=Backstrom|first4=M|last5=Gindy|first5=N|last6=Rask|first6=K|date=2003|title=A direct comparison of the machining performance of a variax 5 axis parallel kinetic machining centre with conventional 3 and 5 axis machine tools|url=http://dx.doi.org/10.1016/s0890-6955(03)00119-6|journal=International Journal of Machine Tools and Manufacture|volume=43|issue=11|pages=1107–1116|doi=10.1016/s0890-6955(03)00119-6|issn=0890-6955|via=}}</ref>, precision<ref>{{Cite journal|last=|first=|date=1997|title=Vibration control for precision manufacturing using piezoelectric actuators|url=http://dx.doi.org/10.1016/s0141-6359(97)81235-4|journal=Precision Engineering|volume=20|issue=2|pages=151|doi=10.1016/s0141-6359(97)81235-4|issn=0141-6359|via=}}</ref>, dynamic performance<ref>R. Clavel, inventor, S.A. SovevaSwitzerland, assignee. Device for the movement and positioning of an element in space, USA patent number, 4,976,582 (1990)</ref> <ref>{{Cite journal|last=Prempraneerach|first=Pradya|date=2014|title=Delta parallel robot workspace and dynamic trajectory tracking of delta parallel robot|url=http://dx.doi.org/10.1109/icsec.2014.6978242|journal=2014 International Computer Science and Engineering Conference (ICSEC)|publisher=IEEE|volume=|pages=|doi=10.1109/icsec.2014.6978242|isbn=978-1-4799-4963-2|via=}}</ref>and in supporting heavy loads<ref> 
 
 Stewart D. A Platform with Six Degrees of Freedom. Proceedings of the Institution of Mechanical Engineers. 1965;180(1):371-386. doi:10.1243/PIME_PROC_1965_180_029_02
Line 14:
 
=== Multipteron family ===
Members of the Multipteron <ref>{{Cite journal|last=Gosselin|first=Clement M.|last2=Masouleh|first2=Mehdi Tale|last3=Duchaine|first3=Vincent|last4=Richard|first4=Pierre-Luc|last5=Foucault|first5=Simon|last6=Kong|first6=Xianwen|title=Parallel Mechanisms of the Multipteron Family: Kinematic Architectures and Benchmarking|url=http://dx.doi.org/10.1109/robot.2007.363045|journal=Proceedings 2007 IEEE International Conference on Robotics and Automation|publisher=IEEE|volume=|pages=|doi=10.1109/robot.2007.363045|isbn=1-4244-0602-1|via=}}</ref> family of manipulators have either 3, 4, 5 or 6 degrees of freedom (DoF). The Tripteron 3-DoF member has three translation degrees of freedom ''3T'' degrees of freedomDoF, with the subsequent members of the Multipteron family each adding a rotational ''R'' degree of freedom. Each membersmember of the family has mutually perpendicular linear actuators connected to a fixed base. The moving platform is typically attached to the linear actuators through three geometrically parallel revolute ''R'' joints. See [[Kinematic pair|joints]] for a description of shorthand joint notation used to describe manipulator configurations, like revolute ''R'' joint for example.
 
==== Tripteron ''3T'' ====
[[File:Tripteron robot.jpg|thumb|Tripteron]]
The 3-DoF Tripteron<ref>Gosselin, C. M., and Kong, X., 2004, “Cartesian Parallel Manipulators,” U.S. Patent No. 6,729,202</ref> <ref>Xianwen Kong, Clément M. Gosselin, Kinematics and Singularity Analysis of a Novel Type of 3-CRR 3-DOF Translational Parallel Manipulator, The International Journal of Robotics Research Vol. 21, No. 9, September 2002, pp. 791-7</ref> <ref>{{Citation|last=Kong|first=Xianwen|title=Type Synthesis of Linear Translational Parallel Manipulators|date=2002|url=http://dx.doi.org/10.1007/978-94-017-0657-5_48|work=Advances in Robot Kinematics|pages=453–462|place=Dordrecht|publisher=Springer Netherlands|isbn=978-90-481-6054-9|access-date=2020-12-14|last2=Gosselin|first2=Clément M.}}</ref> <ref>{{Citation|last=Kim|first=Han Sung|title=Evaluation of a Cartesian Parallel Manipulator|date=2002|url=http://dx.doi.org/10.1007/978-94-017-0657-5_3|work=Advances in Robot Kinematics|pages=21–28|place=Dordrecht|publisher=Springer Netherlands|isbn=978-90-481-6054-9|access-date=2020-12-14|last2=Tsai|first2=Lung-Wen}}</ref> 3-DoF member of thisthe Multipteron family has three parallel-connected kinematic chains consisting of thea linear actuator (active prismatic ''<u>P</u>'' joint) in series with three revolute ''R'' joints ''3(<u>P</u>RRR)'', or equivalently ''3(<u>C</u>RR).'' Similar manipulators, with three parallelogram ''Pa'' limbs ''3(<u>PR</u>PaR)'' are the Orthoglide<ref>{{Citation|last=Wenger|first=P.|title=Kinematic Analysis of a New Parallel Machine Tool: The Orthoglide|date=2000|url=http://dx.doi.org/10.1007/978-94-011-4120-8_32|work=Advances in Robot Kinematics|pages=305–314|place=Dordrecht|publisher=Springer Netherlands|isbn=978-94-010-5803-2|access-date=2020-12-14|last2=Chablat|first2=D.}}</ref> <ref>{{Cite journal|last=Chablat|first=D.|last2=Wenger|first2=P.|date=2003|title=Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide|url=http://dx.doi.org/10.1109/tra.2003.810242|journal=IEEE Transactions on Robotics and Automation|volume=19|issue=3|pages=403–410|doi=10.1109/tra.2003.810242|issn=1042-296X|via=}}</ref> and Parallel cube-manipulator<ref>{{Cite journal|last=Liu|first=Xin-Jun|last2=Jeong|first2=Jay il|last3=Kim|first3=Jongwon|date=2003-10-24|title=A three translational DoFs parallel cube-manipulator|url=http://dx.doi.org/10.1017/s0263574703005198|journal=Robotica|volume=21|issue=6|pages=645–653|doi=10.1017/s0263574703005198|issn=0263-5747}}</ref>. The limbs of the Pantepteron<ref>{{Cite journal|last=Briot|first=S.|last2=Bonev|first2=I. A.|date=2009-01-06|title=Pantopteron: A New Fully Decoupled 3DOF Translational Parallel Robot for Pick-and-Place Applications|url=http://dx.doi.org/10.1115/1.3046125|journal=Journal of Mechanisms and Robotics|volume=1|issue=2|doi=10.1115/1.3046125|issn=1942-4302}}</ref> is correspondalso similar to the Tripteron, with pantograph linkages to speed up the motion of the platform compared to the Tripteron.
 
==== Qudrupteron ''3T1R'' ====
[[File:Quadrupteron robot.png|thumb|Quadrupteronjpg|link=link=Special:FilePath/Quadrupteron.png|thumb|Quadrupteron]]
The 4-DoF Qudrupteron<ref>{{Cite journal|last=Gosselin|first=C|date=2009-01-06|title=Compact dynamic models for the tripteron and quadrupteron parallel manipulators|url=http://dx.doi.org/10.1243/09596518jsce605|journal=Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering|volume=223|issue=1|pages=1–12|doi=10.1243/09596518jsce605|issn=0959-6518}}</ref> has ''3T1R'' DoF with (''3<u>P</u>RRU)(<u>P</u>RRR)'' joint topology.
 
==== Pentapteron ''3T2R'' ====
The 5-DoF Pentateron<ref>{{Cite journal|last=Gosselin|first=Clement M.|last2=Masouleh|first2=Mehdi Tale|last3=Duchaine|first3=Vincent|last4=Richard|first4=Pierre-Luc|last5=Foucault|first5=Simon|last6=Kong|first6=Xianwen|date=2007|title=Parallel Mechanisms of the Multipteron Family: Kinematic Architectures and Benchmarking|url=http://dx.doi.org/10.1109/robot.2007.363045|journal=Proceedings 2007 IEEE International Conference on Robotics and Automation|publisher=IEEE|volume=|pages=|doi=10.1109/robot.2007.363045|isbn=1-4244-0602-1|via=}}</ref> has ''3T2R'' DoF with ''5(<u>P</u>RRRR)'' joint topology.
[[File:Pentapteron.png|thumb|Pentapteron]]
The Pentateron<ref>{{Cite journal|last=Gosselin|first=Clement M.|last2=Masouleh|first2=Mehdi Tale|last3=Duchaine|first3=Vincent|last4=Richard|first4=Pierre-Luc|last5=Foucault|first5=Simon|last6=Kong|first6=Xianwen|date=2007|title=Parallel Mechanisms of the Multipteron Family: Kinematic Architectures and Benchmarking|url=http://dx.doi.org/10.1109/robot.2007.363045|journal=Proceedings 2007 IEEE International Conference on Robotics and Automation|publisher=IEEE|volume=|pages=|doi=10.1109/robot.2007.363045|isbn=1-4244-0602-1|via=}}</ref> has ''3T2R'' DoF with ''5(<u>P</u>RRRR)'' joint topology.
 
==== Hexapteron ''3T3R'' ====
The 6-DoF Hexapteron<ref>{{Cite journal|last=Seward|first=Nicholas|last2=Bonev|first2=Ilian A.|date=2014|title=A new 6-DOF parallel robot with simple kinematic model|url=http://dx.doi.org/10.1109/icra.2014.6907449|journal=2014 IEEE International Conference on Robotics and Automation (ICRA)|publisher=IEEE|volume=|pages=|doi=10.1109/icra.2014.6907449|isbn=978-1-4799-3685-4|via=}}</ref> has ''3T3R'' DoF with ''6(<u>P</u>CRS)'' joint topology, with cylindrical ''C'' and spherical ''S'' joints.
[[File:Hexapteron.png|thumb|Hexapteron]]
The Hexapteron<ref>{{Cite journal|last=Seward|first=Nicholas|last2=Bonev|first2=Ilian A.|date=2014|title=A new 6-DOF parallel robot with simple kinematic model|url=http://dx.doi.org/10.1109/icra.2014.6907449|journal=2014 IEEE International Conference on Robotics and Automation (ICRA)|publisher=IEEE|volume=|pages=|doi=10.1109/icra.2014.6907449|isbn=978-1-4799-3685-4|via=}}</ref> has ''3T3R'' DoF with ''6(<u>P</u>CRS)'' joint topology.
 
=== Isoglide ===
Line 37 ⟶ 35:
=== Xactuator ===
[[File:Xactuator real hardware.jpg|thumb|Xactuator]]
The 4-DoF or 5-DoF Coupled Cartesian manipulators family<ref>{{Cite journal|last=Wiktor|first=Peter|date=2020|title=Coupled Cartesian Manipulators|url=http://dx.doi.org/10.1016/j.mechmachtheory.2020.103903|journal=Mechanism and Machine Theory|volume=|pages=103903|doi=10.1016/j.mechmachtheory.2020.103903|issn=0094-114X|via=}}</ref> are gantry type Cartesian parallel manipulators with 5-6''3T1R'' DoF or ''3T2R'' DoF.
 
== References ==