Content deleted Content added
Citation bot (talk | contribs) Add: s2cid. | You can use this bot yourself. Report bugs here. | Suggested by Abductive | Category:Wikipedia articles in need of updating from May 2020 | via #UCB_Category 292/499 |
m Task 18 (cosmetic): eval 21 templates: del empty params (2×); |
||
Line 9:
== Characteristics==
The HAM distinguishes itself from various other [[Mathematical analysis|analytical methods]] in four important aspects. First, it is a [[series (mathematics)|series]] expansion method that is not directly dependent on small or large physical parameters. Thus, it is applicable for not only weakly but also strongly nonlinear problems, going beyond some of the inherent limitations of the standard [[Perturbation theory|perturbation methods]]. Second, the HAM is a unified method for the [[Aleksandr Lyapunov|Lyapunov]] artificial small parameter method, the delta expansion method, the [[Adomian decomposition method]],<ref name="Adomian94">{{cite book |title=Solving Frontier problems of Physics: The decomposition method|first=G.|last=Adomian|publisher=Kluwer Academic Publishers|year=1994
The homotopy analysis method is also able to combine with other techniques employed in nonlinear differential equations such as [[spectral methods]]<ref>{{citation | last1=Motsa | first1=S.S. | last2=Sibanda|first2=P.| last3=Awad| first3=F.G.| last4 = Shateyi| first4 = S.| title= A new spectral-homotopy analysis method for the MHD Jeffery–Hamel problem | journal=Computers & Fluids| volume=39| issue=7 | pages=1219–1225|year=2010 | doi=10.1016/j.compfluid.2010.03.004}}</ref> and [[Padé approximant]]s. It may further be combined with computational methods, such as the [[boundary element method]] to allow the linear method to solve nonlinear systems. Different from the numerical technique of [[Numerical continuation|homotopy continuation]], the homotopy analysis method is an analytic approximation method as opposed to a discrete computational method. Further, the HAM uses the homotopy parameter only on a theoretical level to demonstrate that a nonlinear system may be split into an infinite set of linear systems which are solved analytically, while the continuation methods require solving a discrete linear system as the homotopy parameter is varied to solve the nonlinear system.
|