Content deleted Content added
m →Description: added the phrase, `i.e. the first linear actuator moves the second one and so on', to specify the meaning of `kinematic linkage' in the context of Cartesian manipulators. |
m Task 18 (cosmetic): eval 21 templates: del empty params (22×); |
||
Line 6:
== Description ==
Cartesian parallel manipulators are in the intersection of two broader categories of manipulators: [[Cartesian coordinate robot|Cartesian]] and [[Parallel manipulator|parallel]]. Cartesian manipulators are driven by mutually perpendicular linear actuators. They generally have a one-to-one correspondence between the linear positions of the actuators and the ''X, Y, Z'' position coordinates of the moving platform, making them easy to control. Furthermore, Cartesian manipulators do not change the orientation of the moving platform. Most commonly, [[Cartesian coordinate robot|Cartesian manipulators]] are [[Serial manipulator|serial]]-connected; i.e., they consist of a single [[Linkage (mechanical)|kinematic linkage]] chain, i.e. the first linear actuator moves the second one and so on. On the other hand, Cartesian parallel manipulators are parallel-connected, i.e. they consist of multiple kinematic linkages. Parallel-connected manipulators have innate advantages<ref>Z. Pandilov, V. Dukovski, Comparison of the characteristics between serial and parallel robots, Acta Technica Corviniensis-Bulletin of Engineering, Volume 7, Issue 1, Pages 143-160</ref> in terms of stiffness,<ref>{{Cite journal|last=Geldart|first=M|last2=Webb|first2=P|last3=Larsson|first3=H|last4=Backstrom|first4=M|last5=Gindy|first5=N|last6=Rask|first6=K|date=2003|title=A direct comparison of the machining performance of a variax 5 axis parallel kinetic machining centre with conventional 3 and 5 axis machine tools|url=http://dx.doi.org/10.1016/s0890-6955(03)00119-6|journal=International Journal of Machine Tools and Manufacture|volume=43|issue=11|pages=1107–1116|doi=10.1016/s0890-6955(03)00119-6|issn=0890-6955
Stewart D. A Platform with Six Degrees of Freedom. Proceedings of the Institution of Mechanical Engineers. 1965;180(1):371-386. doi:10.1243/PIME_PROC_1965_180_029_02
Line 16:
=== Multipteron family ===
Members of the Multipteron <ref>{{Cite journal|last=Gosselin|first=Clement M.|last2=Masouleh|first2=Mehdi Tale|last3=Duchaine|first3=Vincent|last4=Richard|first4=Pierre-Luc|last5=Foucault|first5=Simon|last6=Kong|first6=Xianwen|title=Parallel Mechanisms of the Multipteron Family: Kinematic Architectures and Benchmarking|url=http://dx.doi.org/10.1109/robot.2007.363045|journal=Proceedings 2007 IEEE International Conference on Robotics and Automation|publisher=IEEE
==== Tripteron ====
[[File:Tripteron robot.jpg|thumb|Tripteron]]
The 3-DoF Tripteron<ref>Gosselin, C. M., and Kong, X., 2004, “Cartesian Parallel Manipulators,” U.S. Patent No. 6,729,202</ref> <ref>Xianwen Kong, Clément M. Gosselin, Kinematics and Singularity Analysis of a Novel Type of 3-CRR 3-DOF Translational Parallel Manipulator, The International Journal of Robotics Research Vol. 21, No. 9, September 2002, pp. 791-7</ref> <ref>{{Citation|last=Kong|first=Xianwen|title=Type Synthesis of Linear Translational Parallel Manipulators|date=2002|url=http://dx.doi.org/10.1007/978-94-017-0657-5_48|work=Advances in Robot Kinematics|pages=453–462|place=Dordrecht|publisher=Springer Netherlands|isbn=978-90-481-6054-9|access-date=2020-12-14|last2=Gosselin|first2=Clément M.}}</ref> <ref>{{Citation|last=Kim|first=Han Sung|title=Evaluation of a Cartesian Parallel Manipulator|date=2002|url=http://dx.doi.org/10.1007/978-94-017-0657-5_3|work=Advances in Robot Kinematics|pages=21–28|place=Dordrecht|publisher=Springer Netherlands|isbn=978-90-481-6054-9|access-date=2020-12-14|last2=Tsai|first2=Lung-Wen}}</ref><ref>{{Citation|last=Elkady|first=Ayssam|title=Cartesian Parallel Manipulator Modeling, Control and Simulation|date=2008-04-01|url=http://dx.doi.org/10.5772/5435|work=Parallel Manipulators, towards New Applications|publisher=I-Tech Education and Publishing|isbn=978-3-902613-40-0|access-date=2020-12-22|last2=Elkobrosy|first2=Galal|last3=Hanna|first3=Sarwat|last4=Sobh|first4=Tarek}}</ref> member of the Multipteron family has three parallel-connected kinematic chains consisting of a linear actuator (active prismatic ''<u>P</u>'' joint) in series with three revolute ''R'' joints ''3(<u>P</u>RRR).'' Similar manipulators, with three parallelogram ''Pa'' limbs ''3(<u>PR</u>PaR)'' are the Orthoglide<ref>{{Citation|last=Wenger|first=P.|title=Kinematic Analysis of a New Parallel Machine Tool: The Orthoglide|date=2000|url=http://dx.doi.org/10.1007/978-94-011-4120-8_32|work=Advances in Robot Kinematics|pages=305–314|place=Dordrecht|publisher=Springer Netherlands|isbn=978-94-010-5803-2|access-date=2020-12-14|last2=Chablat|first2=D.}}</ref> <ref>{{Cite journal|last=Chablat|first=D.|last2=Wenger|first2=P.|date=2003|title=Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide|url=http://dx.doi.org/10.1109/tra.2003.810242|journal=IEEE Transactions on Robotics and Automation|volume=19|issue=3|pages=403–410|doi=10.1109/tra.2003.810242|issn=1042-296X
==== Qudrupteron ====
Line 27:
==== Pentapteron ====
The 5-DoF Pentateron<ref>{{Cite journal|last=Gosselin|first=Clement M.|last2=Masouleh|first2=Mehdi Tale|last3=Duchaine|first3=Vincent|last4=Richard|first4=Pierre-Luc|last5=Foucault|first5=Simon|last6=Kong|first6=Xianwen|date=2007|title=Parallel Mechanisms of the Multipteron Family: Kinematic Architectures and Benchmarking|url=http://dx.doi.org/10.1109/robot.2007.363045|journal=Proceedings 2007 IEEE International Conference on Robotics and Automation|publisher=IEEE
==== Hexapteron ====
The 6-DoF Hexapteron<ref>{{Cite journal|last=Seward|first=Nicholas|last2=Bonev|first2=Ilian A.|date=2014|title=A new 6-DOF parallel robot with simple kinematic model|url=http://dx.doi.org/10.1109/icra.2014.6907449|journal=2014 IEEE International Conference on Robotics and Automation (ICRA)|publisher=IEEE
=== Isoglide ===
The Isoglide family<ref>{{Cite journal|last=Gogu|first=Grigore|date=2004|title=Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations|url=http://dx.doi.org/10.1016/j.euromechsol.2004.08.006|journal=European Journal of Mechanics - A/Solids|volume=23|issue=6|pages=1021–1039|doi=10.1016/j.euromechsol.2004.08.006|issn=0997-7538
=== Xactuator ===
[[File:Xactuator real hardware.jpg|thumb|Xactuator]]
The 4-DoF or 5-DoF Coupled Cartesian manipulators family<ref>{{Cite journal|last=Wiktor|first=Peter|date=2020|title=Coupled Cartesian Manipulators|url=http://dx.doi.org/10.1016/j.mechmachtheory.2020.103903|journal=Mechanism and Machine Theory
== References ==
|