Cellular neural network: Difference between revisions

Content deleted Content added
refs
m Duplicate word removed
Line 87:
 
=== AnaFocus, AnaLogic ===
In the 2000s, AnaFocus, a mixed-signal semiconductor company from the the [[University of Seville]], introduced their ACE prototype CNN processor product line. Their first ACE processor contained 20x20 B/W processor units; and subsequent processors provided 48x48 and 128x128 grayscale processor units, improving the speed and processing elements. AnaFocus also had a multilayer CASE prototype CNN processors line. Their processors allowed real-time interaction between the sensing and processing. In 2014, AnaFocus had been sold to e2v technologies.<ref>{{Cite web|title=Acquisition of AnaFocus: Fast-growing CMOS imaging business to be integrated into High Performance Imaging division|url=https://www.teledyne-e2v.com/news/acquisition-of-anafocus-fast-growing-cmos-imaging-business-to-be-integrated-into-high-performance-imaging-division/|access-date=2020-12-27|website=e2v}}</ref>
 
Another company, AnaLogic Computers was founded in 2000 by many of the same researchers behind the first algorithmically programmable CNN Universal Processor. In 2003, AnaLogic Computers developed a PCI-X visual processor board that included the ACE 4K processor,<ref>{{Cite web|title=StackPath|url=https://www.vision-systems.com/home/article/16738443/cellular-device-processes-at-ultrafast-speeds|access-date=2020-12-27|website=www.vision-systems.com}}</ref> with a [[Texas Instruments|Texas Instrument]] DIP module and a high-speed frame-grabber. This allowed CNN processing to be easily included in a desktop computer. In 2006, AnaLogic Computers developed their Bi-I Ultra High Speed Smart Camera product line, which includes the ACE 4K processor in their high-end models.<ref>A. Rodríguez-Vázquez, G. Liñán-Cembrano, L. Carranza, E. Roca-Moreno, R. Carmona-Galán, F. Jiménez-Garrido, R. Domínguez-Castro, and S. Meana, "ACE16k: The Third Generation of Mixed-Signal SIMD-CNN ACE Chips Toward VSoCs," IEEE Trans. on Circuits and Systems - I, 51(5): 851-863, 2004.</ref>