Content deleted Content added
Line 19:
It follows that <math>\varphi=\varphi_2-\varphi_1</math> is a solution of [[Laplace's equation]], which is a special case of [[Poisson's equation]] that equals to <math>0</math>. By subtracting the two solutions above gives
:<math>\mathbf{\nabla}^2 \varphi = \mathbf{\nabla}^2 \varphi_1 - \mathbf{\nabla}^2 \varphi_2 = 0. \qquad (1)
We now sequentially consider three distinct boundary conditions: a Dirichlet boundary condition, a Neumann boundary condition, and a mixed boundary condition.
Let us first consider the case where [[Dirichlet boundary condition|Dirichlet boundary conditions]] are specified as <math>\varphi = 0</math> on the boundary of the region. These follow because the boundary conditions and the charge distributions are the same for both 'solutions'.
|