Uniqueness theorem for Poisson's equation: Difference between revisions

Content deleted Content added
Line 33:
:<math>\nabla \cdot (\varphi \, \nabla \varphi )= \, (\nabla \varphi )^2.</math>
 
TakingBy taking the volume integral over the region, we find givesthat
 
:<math>\int_V \mathbf{\nabla}\cdot(\varphi \, \mathbf{\nabla}\varphi) \, \mathrm{d}V= \int_V \mathbf{(\nabla}\varphi)\cdot( \mathbf{\nabla}\varphi) \, \mathrm{d}V= \int_V (\mathbf{\nabla}\varphi)^2 \, \mathrm{d}V</math>
 
And after aplying the [[divergence theorem]], the expression above can be rewritten as