Content deleted Content added
Note minor optimization for GF(2) BCH code. |
m Task 18 (cosmetic): eval 5 templates: hyphenate params (5×); |
||
Line 1:
{{distinguish|Berlekamp's algorithm}}
The '''Berlekamp–Massey algorithm''' is an [[algorithm]] that will find the shortest [[linear feedback shift register]] (LFSR) for a given binary output sequence. The algorithm will also find the [[Minimal polynomial (field theory)|minimal polynomial]] of a linearly [[Recurrence relation|recurrent sequence]] in an arbitrary [[field (mathematics)|field]]. The field requirement means that the Berlekamp–Massey algorithm requires all non-zero elements to have a multiplicative inverse.<ref>{{Harvnb|Reeds|Sloane|1985|p=2}}</ref> Reeds and Sloane offer an extension to handle a [[ring (mathematics)|ring]].<ref>{{Citation |last=Reeds |first=J. A. |last2=Sloane |first2=N. J. A. |
[[Elwyn Berlekamp]] invented an algorithm for decoding [[BCH code|Bose–Chaudhuri–Hocquenghem (BCH) codes]].<ref>{{Citation
|last= Berlekamp
|first= Elwyn R.
|
|title= Nonbinary BCH decoding
|year= 1967
Line 12:
|last= Berlekamp
|first= Elwyn R.
|
|title=Algebraic Coding Theory
|place=Laguna Hills, CA
|
|year=1984
|edition= Revised
Line 22:
|first= J. L.
|last= Massey
|
|title= Shift-register synthesis and BCH decoding
|journal= IEEE Transactions on Information Theory
|