Content deleted Content added
No edit summary |
No edit summary |
||
Line 7:
[[Image:Overfitted Data.png|thumb|300px|Figure 1. Data (black dots), which was generated via the straight line and some added noise, is perfectly fitted by a curvy [[polynomial]].]]
Validation based on only the first type (data that was used in the construction of the model) is often inadequate. An extreme example is illustrated in Figure 1. The figure displays data (black dots) that was generated via a straight line + noise. The figure also displays a
Thus, validation is usually not based on only considering data that was used in the construction of the model; rather, validation usually also employs data that was not used in the construction. In other words, validation usually includes testing some of the model's predictions.
A model can be validated only relative to some application area.<ref name="NRC12" /><ref name="BBKK">{{citation | author1-first= J. J. | author1-last= Batzel | author2-first= M. | author2-last= Bachar | author3-first= J. M. | author3-last= Karemaker | author4-first= F. | author4-last= Kappel | pages= 3–19 | chapter= Chapter 1: Merging mathematical and physiological knowledge | editor1-first= J. J. | editor1-last= Batzel | editor2-first= M. | editor2-last= Bachar | editor3-first= F. | editor3-last= Kappel | title= Mathematical Modeling and Validation in Physiology | publisher= [[Springer Science+Business Media|Springer]] | year= 2013 | doi= 10.1007/978-3-642-32882-4_1}}.</ref> A model that is valid for one application might be invalid for some other applications. As an example, consider the
==Methods for validating==
|