Content deleted Content added
m Task 18 (cosmetic): eval 5 templates: hyphenate params (2×); |
|||
Line 16:
: <math>\mathbf{\Delta}(\mathbf{\theta}) = \sum_{i=1}^n \left[ \frac{\partial^2 \ell(\mathbf{\theta}) }{ \partial \mathbf{\theta} \, \partial \mathbf{\theta}^{\mathsf{T}} } + \frac{\partial \ell(\mathbf{\theta}) }{ \partial \mathbf{\theta} } \frac{\partial \ell (\mathbf{\theta}) }{ \partial \mathbf{\theta} } \right]</math>
where <math>\mathbf{\Delta} (\mathbf{\theta})</math> is an <math>(r \times r) </math> [[random matrix]], where <math>r</math> is the number of parameters. White showed that the elements of <math>n^{-1/2} \mathbf{\Delta} ( \mathbf{\hat{\theta}} )</math>, where <math>\mathbf{\hat{\theta}}</math> is the MLE, are asymptotically [[Normal distribution|normally distributed]] with zero means when the model is correctly specified.<ref>{{cite book |first=L. G. |last=Godfrey |
== References ==
Line 23:
== Further reading ==
* {{cite book |first=W. |last=Krämer |first2=H. |last2=Sonnberger |title=The Linear Regression Model Under Test |___location=Heidelberg |publisher=Physica-Verlag |year=1986 |isbn=3-7908-0356-1 |pages=105–110 |url=https://www.google.com/books/edition/_/NSvqCAAAQBAJ?hl=en&gbpv=1&pg=PA105 }}
* {{cite book |first=Halbert |last=White |chapter=Information Matrix Testing |title=Estimation, Inference and Specification Analysis |___location=New York |publisher=Cambridge University Press |year=1994 |isbn=0-521-25280-6 |pages=300–344 |
[[Category:Statistical tests]]
|