Content deleted Content added
m Open access bot: doi added to citation with #oabot. |
Tom.Reding (talk | contribs) m Fix 1 auth/ed/transl punctuation; WP:GenFixes on |
||
Line 1:
{{
{{About|the term '''C-value''' in cell biology|the tool used by [[architects]] and [[engineers]] to calculate lines-of-sight by spectators in theaters and stadiums|sightline}} '''C-value''' is the amount, in [[picogram]]s, of [[DNA]] contained within a [[haploid]] [[Cell nucleus|nucleus]] (e.g. a [[gamete]]) or one half the amount in a [[diploid]] [[somatic cell]] of a [[eukaryotic]] organism. In some cases (notably among diploid organisms), the terms C-value and [[genome size]] are used interchangeably; however, in [[Polyploidy|polyploids]] the C-value may represent two or more [[genome]]s contained within the same nucleus. Greilhuber ''et al.''<ref name="Greilhuber2005">{{cite journal |vauthors=Greilhuber J, Doležel J, Lysák M, Bennett MD |year=2005 |title=The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents |journal=Annals of Botany |volume=95 |doi=10.1093/aob/mci019 |pmid=15596473 |issue=1 |pages=255–60|pmc=4246724 }}</ref> have suggested some new layers of terminology and associated abbreviations to clarify this issue, but these somewhat complex additions are yet to be used by other authors.
Line 9:
== Variation among species ==
C-values vary enormously among species. In animals they range more than 3,300-fold, and in land plants they differ by a factor of about 1,000.<ref name="Bennett2005"/><ref name="Gregory2005">{{cite book |author=Gregory
The '''C-value enigma''' or '''C-value paradox''' is the complex puzzle surrounding the extensive variation in nuclear [[genome size]] among [[eukaryotic]] species. At the center of the C-value enigma is the observation that genome size does not correlate with organismal complexity; for example, some single-celled [[protozoa|protists]] have genomes much larger than that of [[humans]].
Line 17:
=== C-value paradox ===
In 1948, Roger and Colette Vendrely reported a "remarkable constancy in the nuclear DNA content of all the cells in all the individuals within a given animal species",<ref>{{cite journal |vauthors=Vendrely R, Vendrely C|year=1948 |title=La teneur du noyau cellulaire en acide désoxyribonucléique à travers les organes, les individus et les espèces animales: Techniques et premiers résultats |journal=Experientia |volume=4 |pages=434–436 |doi=10.1007/bf02144998 |pmid=18098821 |issue=11}}</ref> which they took as evidence that [[DNA]], rather than [[protein]], was the substance of which [[genes]] are composed. The term C-value reflects this observed constancy. However, it was soon found that C-values ([[genome size]]s) vary enormously among species and that this bears no relationship to the ''presumed'' number of genes (''as reflected by'' the [[complexity]] of the [[organism]]).<ref name="Ancestor">{{cite book |title=The Ancestor's Tale |isbn=978-0544859937 |last1=Dawkins |first1=Richard |last2=Wong |first2=Yan |year=2016 |title-link=The Ancestor's Tale |author1-link=Richard Dawkins }}</ref> For example, the [[Somatic cells|cells]] of some [[salamanders]] may contain 40 times more DNA than those of humans.<ref name="Gregory, T.R. (2013). Animal Genome Size Database">{{cite web|title=Animal Genome Size Database|url=http://www.genomesize.com/statistics.php?stats=amphibs|accessdate=14 May 2013}}</ref> Given that C-values were assumed to be constant because genetic information is encoded by DNA, and yet bore no relationship to presumed gene number, this was understandably considered [[paradox]]ical; the term "C-value paradox" was used to describe this situation by C.A. Thomas
The discovery of [[non-coding DNA]] in the early 1970s resolved the main question of the C-value paradox: [[genome size]] does not reflect [[gene]] number in [[eukaryotes]] since most of their DNA is non-coding and therefore does not consist of genes. The [[human genome]], for example, comprises less than 2% protein-coding regions, with the remainder being various types of non-coding DNA (especially [[transposable elements]]).<ref>{{Cite journal
Line 118:
== References ==<!-- ZoolSci23:1017. -->
{{
== External links ==
|