'''Quantum image processing''' (QIMP) is primarily devoted to using [[quantum computing]] and [[quantum information processing]] to create and work with [[Quantumquantum image|quantum images]]s.<ref name="Venegas-Andraca2005">{{cite thesis |last= Venegas-Andraca |first= Salvador E.|date= 2005 |title= Discrete Quantum Walks and Quantum Image Processing|type= DPhil thesis|publisher= The University of Oxford|url= https://ora.ox.ac.uk/objects/uuid:2baab08b-ee68-4ce5-8e68-8201f086a1ba}}</ref><ref name="Iliyasu Towards 2013">{{cite journal |title=Towards realising secure and efficient image and video processing applications on quantum computers |journal=Entropy |volume=15 |issue=8 |pages=2874–2974 |year=2013 |last1=Iliyasu |first1=A.M.|bibcode=2013Entrp..15.2874I |doi=10.3390/e15082874 |doi-access=free }}</ref>. Due to some of the astounding properties inherent to quantum computation, notably [[Quantum entanglement|entanglement]] and parallelism, it is anticipated that QIP technologies will offer capabilities and performances that are, as yet, unrivaled by their traditional equivalents. These improvements could be in terms of computing speed, guaranteed security, and minimal storage requirements, etc.<ref name="Iliyasu Towards 2013"/><ref name="Yan Quantum 2017">{{cite journal |title=Quantum image processing: A review of advances in its security technologies |journal=International Journal of Quantum Information |volume=15 |issue=3 |pages=1730001–44 |year=2017 |last1=Yan |first1=F.|last2=Iliyasu |first2=A.M.|last3=Le |first3=P.Q.|doi=10.1142/S0219749917300017 |bibcode=2017IJQI...1530001Y |doi-access=free }}</ref>
==Background==
Vlasov's work<ref name="Vlasov Quantum 2003">{{cite journal|last1=Vlasov|first1=A.Y.|year=1997|title=Quantum computations and images recognition|url=https://archive.org/details/arxiv-quant-ph9703010|arxiv=quant-ph/9703010|bibcode=1997quant.ph..3010V}}</ref> in 1997 focused on the use of a quantum system to recognize [[orthogonal images]]. This was followed by efforts using [[quantum algorithms]] to search specific patterns in [[Binarybinary image|binary images]]s<ref name="Schutzhold Pattern 2003">{{cite journal |title=Pattern recognition on a quantum computer |journal=Physical Review A |volume=67 |issue=6 |pages=062311 |year=2003 |last1=Schutzhold |first1=R.|arxiv=quant-ph/0208063 |doi=10.1103/PhysRevA.67.062311 |bibcode=2003PhRvA..67f2311S }}</ref> and detect the posture of certain targets.<ref name="Beach Quantum 2003">{{cite journal |title=Quantum image processing (QuIP) |journal=Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop |pages=39–40 |year=2003 |last1=Beach |first1=G.|last2=Lomont |first2=C.|last3=Cohen |first3=C.|doi=10.1109/AIPR.2003.1284246 |isbn=0-7695-2029-4 |s2cid=32051928 }}</ref> Notably, more optics-based interpretation for quantum imaging were initially experimentally demonstrated in <ref>{{cite journal |title=Optical imaging by means of two-photon quantum entanglement |journal=Physical Review A |volume=52 |issue=5 |pages=R3429–R3432 |year=1995 |last1=Pittman |first1=T.B.|last2=Shih |first2=Y.H.|last3=Strekalov |first3=D.V.|bibcode=1995PhRvA..52.3429P |doi=10.1103/PhysRevA.52.R3429 |pmid=9912767 }}</ref> and formalized in <ref name="Lugiato quantum 2002">{{cite journal |title=Quantum imaging |journal=Journal of Optics B |volume=4 |issue=3 |pages=S176–S183 |year=2002 |last1=Lugiato |first1=L.A.|last2=Gatti |first2=A.|last3=Brambilla |first3=E.|doi=10.1088/1464-4266/4/3/372 |bibcode=2002JOptB...4S.176L |arxiv=quant-ph/0203046 |s2cid=9640455 }}</ref> after seven years. In 2003, Venegas-Andraca and Bose presented Qubit Lattice, the first published general model for storing, processing and retrieving images using quantum systems.<ref name="Venegas-AndracaIJCAI2003">{{cite journal |title=Quantum Computation and Image Processing: New Trends in Artificial Intelligence |journal=Proceedings of the 2003 IJCAI International Conference on Artificial Intelligence |pages=1563–1564 |year=2003 |last1=Venegas-Andraca |first1=S.E.|last2=Bose|first2=S.|url=https://www.ijcai.org/Proceedings/03/Papers/276.pdf}}</ref><ref name="Venegas Storing 2003">{{cite journal |title=Storing, processing, and retrieving an image using quantum mechanics |journal=Proceedings of SPIE Conference of Quantum Information and Computation |volume=5105 |pages=134–147 |year=2003 |last1=Venegas-Andraca |first1=S.E.|last2=Bose |first2=S.|editor3-first=Howard E |editor3-last=Brandt |editor2-first=Andrew R |editor2-last=Pirich |editor1-first=Eric |editor1-last=Donkor |bibcode=2003SPIE.5105..137V |doi=10.1117/12.485960 |series=Quantum Information and Computation |s2cid=120495441 }}</ref>. Later on, in 2005, Lattorre proposed another kind of representation, called the Real Ket,<ref name="Latorre Image 2005">{{cite journal |title=Image compression and entanglement |url=https://archive.org/details/arxiv-quant-ph0510031 |arxiv=quant-ph/0510031 |year=2005 |last1=Latorre |first1=J.I.|bibcode=2005quant.ph.10031L }}</ref> whose purpose was to encode quantum images as a basis for further applications in QIMP. Furthermore, in 2010 Venegas-Andraca and Ball presented a method for storing and retrieving [[Well-known text representation of geometry|binary geometrical shapes]] in quantum mechanical systems in which it is shown that maximally entangled qubits can be used to reconstruct images without using any additional information.<ref name="Venegas-Andraca2010">{{cite journal |title=Processing Images in Entangled Quantum Systems |journal=Quantum Informatiom Processing |volume=9 |issue=1 |pages=1–11 |year=2010 |last1=Venegas-Andraca |first1=S.E.|last2=Ball |first2=J.|doi=10.1007/s11128-009-0123-z |s2cid=34988263 }}</ref>.
Technically, these pioneering efforts with the subsequent studies related to them can be classified into three main groups:<ref name="Yan Quantum 2017"/>
Line 13:
#Classically-inspired quantum image processing (QIP)<ref name="Iliyasu Towards 2013"/>
A survey of quantum image representation has been published in.<ref name="Yan2016">{{cite journal |title=A survey of quantum image representations |journal=Quantum Informatiom Processing |volume=15 |issue=1 |pages=1–35 |year=2016 |last1=Yan |first1=F.|last2=Iliyasu |first2=A.M.|last3=Venegas-Andraca |first3=S.E.| bibcode=2016QuIP...15....1Y|doi=10.1007/s11128-015-1195-6 |s2cid=31229136 }}</ref>. Furthermore, the recently published book ''Quantum Image Processing'' <ref name="Yan2020">{{cite book |last1=Yan |first1= Fei| last2=Venegas-Andraca |first2= Salvador E.|date= 2020|title= Quantum Image Processing|url= https://www.springer.com/gp/book/9789813293304 |publisher= Springer|isbn= 978-9813293304}}</ref> provides a comprehensive introduction to quantum image processing, which focuses on extending conventional image processing tasks to the quantum computing frameworks. It summarizes the available quantum image representations and their operations, reviews the possible quantum image applications and their implementation, and discusses the open questions and future development trends.