Simplex algorithm: Difference between revisions

Content deleted Content added
No edit summary
Yobot (talk | contribs)
m References after punctuation per WP:REFPUNCT, WP:CITEFOOT, WP:PAIC + other fixes
Line 11:
 
After Dantzig included an objective function as part of his formulation during mid-1947, the problem was mathematically more tractable. Dantzig realized that one of the unsolved problems that [[George Dantzig#Mathematical statistics|he had mistaken]] as homework in his professor [[Jerzy Neyman]]'s class (and actually later solved), was applicable to finding an algorithm for linear programs. This problem involved finding the existence of [[Lagrange multipliers on Banach spaces|Lagrange multipliers]] for general linear programs over a continuum of variables, each bounded between zero and one, and satisfying linear constraints expressed in the form of [[Lebesgue integral]]s. Dantzig later published his "homework" as a thesis to earn his doctorate. The column geometry used in this thesis gave Dantzig insight that made him believe that the Simplex method would be very efficient.<ref>{{Cite book|url = http://www.dtic.mil/dtic/tr/fulltext/u2/a182708.pdf|chapter = Origins of the simplex method|last = Dantzig|first = George|date = May 1987|journal = A History of Scientific Computing|pages = 141–151|doi = 10.1145/87252.88081|isbn = 978-0-201-50814-7}}</ref>
 
== Overview ==
{{further|Linear programming}}
Line 281 ⟶ 282:
</ref>
 
In 2014, it was proved that a particular variant of the simplex method is [[NP-mighty]], i.e., it can be used to solve, with polynomial overhead, any problem in NP implicitly during the algorithm's execution. Moreover, deciding whether a given variable ever enters the basis during the algorithm's execution on a given input, and determining the number of iterations needed for solving a given problem, are both [[NP-hardness|NP-hard]] problems.<ref>{{Cite journal|last1=Disser|first1=Yann|last2=Skutella|first2=Martin|date=2018-11-01|title=The Simplex Algorithm Is NP-Mighty|journal=ACM Trans. Algorithms|volume=15|issue=1|pages=5:1–5:19|doi=10.1145/3280847|issn=1549-6325|arxiv=1311.5935|s2cid=54445546}}</ref> At about the same time it was shown that there exists an artificial pivot rule for which computing its output is [[PSPACE-complete]].<ref>{{Citation | last1 = Adler | first1 = Ilan | last2 = Christos | first2 = Papadimitriou | author2-link = Christos Papadimitriou | last3 = Rubinstein | first3 = Aviad | title = On Simplex Pivoting Rules and Complexity Theory | journal = International Conference on Integer Programming and Combinatorial Optimization | volume = 17 | pages = 13–24 | year = 2014 | arxiv = 1404.3320 | doi = 10.1007/978-3-319-07557-0_2| series = Lecture Notes in Computer Science | isbn = 978-3-319-07556-3 | s2cid = 891022 }}</ref>. In 2015, this was strengthened to show that computing the output of Dantzig's pivot rule is [[PSPACE-complete]].<ref>{{Citation | last1 = Fearnly | first1 = John | last2 = Savani | first2 = Rahul | title = The Complexity of the Simplex Method | journal = Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing | pages = 201–208 | year = 2015 | arxiv = 1404.0605 | doi = 10.1145/2746539.2746558| isbn = 9781450335362 | s2cid = 2116116 }}</ref>
 
Analyzing and quantifying the observation that the simplex algorithm is efficient in practice despite its exponential worst-case complexity has led to the development of other measures of complexity. The simplex algorithm has polynomial-time [[Best, worst and average case|average-case complexity]] under various [[probability distribution]]s, with the precise average-case performance of the simplex algorithm depending on the choice of a probability distribution for the [[random matrix|random matrices]].<ref name="Schrijver" >[[Alexander Schrijver]], ''Theory of Linear and Integer Programming''. John Wiley & sons, 1998, {{isbn|0-471-98232-6}} (mathematical)</ref><ref name="Borgwardt">The simplex algorithm takes on average ''D'' steps for a cube. {{harvtxt|Borgwardt|1987}}: {{cite book|last=Borgwardt|first=Karl-Heinz|title=The simplex method: A probabilistic analysis|series=Algorithms and Combinatorics (Study and Research Texts)|volume=1|publisher=Springer-Verlag|___location=Berlin|year=1987|pages=xii+268|isbn=978-3-540-17096-9|mr=868467}}</ref> Another approach to studying "[[porous set|typical phenomena]]" uses [[Baire category theory]] from [[general topology]], and to show that (topologically) "most" matrices can be solved by the simplex algorithm in a polynomial number of steps.{{Citation needed|date=June 2019}} Another method to analyze the performance of the simplex algorithm studies the behavior of worst-case scenarios under small perturbation – are worst-case scenarios stable under a small change (in the sense of [[structural stability]]), or do they become tractable? This area of research, called [[smoothed analysis]], was introduced specifically to study the simplex method. Indeed, the running time of the simplex method on input with noise is polynomial in the number of variables and the magnitude of the perturbations.<ref>{{Cite book | last1=Spielman | first1=Daniel | last2=Teng | first2=Shang-Hua | author2-link=Shanghua Teng | title=Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing | publisher=ACM | isbn=978-1-58113-349-3 | doi=10.1145/380752.380813 | year=2001 | chapter=Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time| pages=296–305 | arxiv=cs/0111050| s2cid=1471 }}</ref>
Line 331 ⟶ 332:
{{Mathematical programming}}
{{Authority control}}
 
{{DEFAULTSORT:Simplex Algorithm}}
[[Category:Optimization algorithms and methods]]