Content deleted Content added
m →Further reading: - pointless comment in citation |
m Task 18 (cosmetic): eval 7 templates: del empty params (1×); hyphenate params (2×); del |ref=harv (2×); |
||
Line 40:
A [[matroid]] is a structure that captures and generalizes the notion of [[linear independence]] in [[vector space]]s. There are many equivalent ways to define a matroid, the most significant being in terms of independent sets, bases, circuits, closed sets or flats, closure operators, and rank functions.
Matroid theory borrows extensively from the terminology of [[linear algebra]] and [[graph theory]], largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, [[topology]], [[combinatorial optimization]], [[network theory]] and [[coding theory]].<ref name=Neel2009>{{cite journal|last1=Neel|first1=David L.|last2=Neudauer|first2=Nancy Ann|author2-link= Nancy Neudauer |title=Matroids you have known|journal=Mathematics Magazine|date=2009|volume=82|issue=1|pages=26–41|url=http://www.maa.org/sites/default/files/pdf/shortcourse/2011/matroidsknown.pdf|
===Finite geometries===
Line 61:
==Further reading==
*{{ cite book | last1=Bannai | first1=Eiichi | last2=Ito | first2=Tatsuro | title=Algebraic combinatorics I: Association schemes | publisher=The Benjamin/Cummings Publishing Co., Inc. | ___location=Menlo Park, CA | year=1984 | pages=xxiv+425 | isbn=0-8053-0490-8 | mr=0882540
* {{cite book|editor-first1=Louis J. |editor-last1=Billera|editor1-link=Louis Billera|editor-first2= Anders|editor-last2= Björner|editor2-link=Anders Björner|editor-first3= Curtis|editor-last3= Greene|editor3-link=Curtis Greene | editor-first4= Rodica|editor-last4= Simion|editor4-link=Rodica Simion|editor-first5=Richard P.|editor-last5= Stanley | editor5-link=Richard P. Stanley |url=http://library.msri.org/books/Book38/index.html|title=New Perspectives in Algebraic Combinatorics|series= MSRI Publications|volume= 38|publisher= [[Cambridge University Press]]|year= 1999}}
*{{cite book|first=Chris D.| last=Godsil|author-link = Chris Godsil|title=Algebraic Combinatorics|publisher=Chapman and Hall|year=1993|___location=New York|ISBN=0-412-04131-6 | mr=1220704
▲*{{cite book|first=Chris D.| last=Godsil|author-link = Chris Godsil|title=Algebraic Combinatorics|publisher=Chapman and Hall|year=1993|___location=New York|ISBN=0-412-04131-6 | mr=1220704|ref=harv }}
* Takayuki Hibi, ''Algebraic combinatorics on convex polytopes'', Carslaw Publications, Glebe, Australia, 1992
*[[Melvin Hochster]], ''Cohen-Macaulay rings, combinatorics, and simplicial complexes''. Ring theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975), pp. 171–223. Lecture Notes in Pure and Appl. Math., vol. 26, Dekker, New York, 1977.
|