Integration using Euler's formula: Difference between revisions

Content deleted Content added
Fractions: Fixed an error
Tags: Mobile edit Mobile web edit
Fractions: Math notation.
Line 64:
Using Euler's identity, this integral becomes
:<math>\frac12 \int \frac{6 + e^{2ix} + e^{-2ix} }{e^{ix} + e^{-ix} + e^{3ix} + e^{-3ix}} \, dx.</math>
If we now make the [[integration by substitution|substitution]] {{<math|''>u'' {{=}} ''e''<sup>''^{ix''}</supmath>}}, the result is the integral of a [[rational function]]:
:<math>-\frac{i}{2}\int \frac{1+6u^2 + u^4}{1 + u^2 + u^4 + u^6}\,du.</math>
One may proceed using [[partial fraction decomposition]].