Logicismo: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m Annullate le modifiche di FrescoBot (discussione), riportata alla versione precedente di 109.115.31.87 |
|||
Riga 15:
Frege incontrò un certo successo nello sviluppo di un linguaggio simbolico capace di [[Sistema formale|formalizzare]] i ragionamenti: tale linguaggio "ideografico", che si rifaceva ai primi approcci alla formalizzazione intrapresi da [[George Boole]] e faceva uso di strumenti concettuali simili a quelli della [[Teoria ingenua degli insiemi|teoria intuitiva degli insiemi]] di [[Georg Cantor]] fu esposto da Frege nel suo libro ''Ideografia''.
Nella teoria semantica di Frege, i predicati denotano concetti: funzioni unarie particolari (il cui codominio contiene solo valori di verità). Per tutti i predicati (o proprietà) vale il seguente assioma di comprensione.
'''Assioma di comprensione''': assegnazione necessaria a un concetto di una rispettiva "estensione": l'insieme degli oggetti cui il concetto è attribuibile veridicamente; e che è l'insieme vuoto, {∅}, se il concetto è contraddittorio (ad esempio:‘essere diverso da se stesso'). <br>Dopodiché, Frege definisce il concetto di equinumerosità<ref>Ci sono molte ridondanze lessicali che indicano questo concetto: ugualmente numeroso; equipotenza; equipollenza; etc...</ref> ‘avere lo stesso numero di oggetti': due insiemi sono equinumerosi se collegati da una corrispondenza biunivoca (ad ogni elemento del primo corrisponde uno e uno solo elemento del secondo; e viceversa). A questo punto, Frege definisce "numero di un dato insieme" come l'insieme di tutti gli insiemi equinumerosi a quello dato<ref>Per essere esatti Frege definisce il numero come una "[[Classe (insiemistica)|classe]] di classi"; però pone che la classe sia individuata da una totalità di oggetti. E oggi si dice insieme una collezione di elementi individuabile dalla totalità degli elementi stessi, e considerabile essa stessa come un elemento (nell'insieme di insiemi, gli insiemi sono appunto degli elementi). Tutti gli insiemi sono classi, ma non tutte le classi sono insiemi. Ad esempio non è un insieme la classe delle stelle visibili in cielo, in cui ci sono elementi che si aggiungono e si sottraggono nel corso di un processo di enumerazione.</ref>.
L'assioma di assegnar un'estensione a un concetto equivale a garantire l'esistenza di oggetti che cadono sotto di esso, perciò esiste almeno un ente matematico, lo zero, come l'insieme di tutti gli insiemi equinumerosi all'insieme vuoto che è l'estensione di qualsiasi concetto contraddittorio. Ciò dimostra anche l'infinità dei numeri naturali: poiché lo zero è un oggetto logico, esso è considerabile come elemento, ma allora esiste anche il numero uno come l'insieme di tutti gli insiemi equinumerosi all'insieme ‘zero' di tutti gli insiemi equinumerosi all'insieme vuoto, che era l'estensione di un concetto contraddittorio dato. E se esistono lo zero e l'uno, allora esistono almeno due oggetti logici procedendo come sopra. E se esistono lo zero, l'uno, e il due, allora esistono almeno tre oggetti logici; e così si procede all'infinito.
Frege crede di aver raggiunto dunque gli obbiettivi di garantire l'esistenza di infiniti enti matematici definiti solo da ingredienti logici, con cui è dunque possibile procedere a dimostrare verità aritmetiche.
|