Content deleted Content added
Citation bot (talk | contribs) Alter: url. URLs might have been internationalized/anonymized. Add: eprint, class, s2cid, isbn, author pars. 1-1. Removed parameters. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Suggested by Headbomb | All pages linked from cached copy of Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | via #UCB_webform_linked 12/54 |
m linking |
||
Line 116:
=== Image processing ===
CNN processors were designed to perform image processing; specifically, real-time ultra-high frame-rate (>10,000 frame/s) processing for applications like particle detection in jet engine fluids and spark-plug detection. Currently, CNN processors can achieve up to 50,000 frames per second, and for certain applications such as missile tracking, flash detection, and spark-plug diagnostics these microprocessors have outperformed a conventional [[supercomputer]]. CNN processors lend themselves to local, low-level, processor intensive operations and have been used in feature extraction,<ref>O. Lahdenoja, M. Laiho and A. Paasio, "Local Binary Pattern Feature Vector Extraction with CNN", Int’l Workshop on Cellular Neural Networks and Their Applications, 2005.</ref> level and gain adjustments, color constancy detection,<ref>L. Torok and A. Zarandy, "CNN Based Color Constancy Algorithm", Int’l Workshop on Cellular Neural Networks and Their Applications, 2002.</ref> contrast enhancement, [[deconvolution]],<ref>L. Orzo, "Optimal CNN Templates for Deconvolution", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006</ref> [[image compression]],<ref>P. Venetianer and T. Roska, "Image Compression by Cellular Neural Networks," IEEE Trans. Circuits Syst., 45(3): 205-215, 1998.</ref><ref>R. Dogarut, R. Tetzlaffl and M. Glesner, "Semi-Totalistic CNN Genes for Compact Image Compression", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref> [[motion estimation]],<ref name="Y. Cheng, J. Chung 2005">Y. Cheng, J. Chung, C. Lin and S. Hsu, "Local Motion Estimation Based On Cellular Neural Network Technology for Image Stabilization Processing", Int’l Workshop on Cellular Neural Networks and Their Applications, 2005.</ref><ref>A. Gacsadi, C. Grava, V. Tiponut, and P. Szolgay, "A CNN Implementation of the Horn & Schunck Motion Estimation Method", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref> image encoding, image decoding, image segmentation,<ref>S. Chen, M. Kuo and J. Wang, "Image Segmentation Based on Consensus Voting", Int’l Workshop on Cellular Neural Networks and Their Applications, 2005.</ref><ref>G. Grassi, E. Sciascio, A. Grieco and P. Vecchio, "A New Object-oriented Segmentation Algorithm based on CNNs - Part II: Performance Evaluation", Int’l Workshop on Cellular Neural Networks and Their Applications, 2005.</ref> orientation preference maps,<ref>J. Wu, Z. Lin and C. Liou, "Formation and Variability of Orientation Preference Maps in Visual Cortex: an Approach Based on Normalized Gaussian Arrays", Int’l Workshop on Cellular Neural Networks and Their Applications, 2005.</ref> pattern learning/recognition,<ref name=":2" /><ref>C. Wu and S. Tsai, "Autonomous Ratio-Memory Cellular Nonlinear Network (ARMCNN) for Pattern Learning and Recognition", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref> multi-target tracking,<ref>G. Timar and C. Rekeczky, "Multitarget Tracking Applications of the Bi-I Platform: Attention-selection, Tracking and Navigation", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref> [[image stabilization]],<ref name="Y. Cheng, J. Chung 2005"/> resolution enhancement,<ref>T. Otake, T. Konishi, H. Aomorit, N. Takahashit and M. Tanakat, "Image Resolution Upscaling Via Two-Layered Discrete Cellular Neural Network", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref> image deformations and mapping, image inpainting,<ref>A. Gacsadi and P. Szolgay, "Image Inpainting Methods by Using Cellular Neural Networks", Int’l Workshop on Cellular Neural Networks and Their Applications, 2005.</ref> optical flow,<ref>B. Shi, T. Roska and L. Chua, "Estimating Optical Flow with Cellular Neural Networks," Int’l Journal of Circuit Theory and Applications, 26: 344-364, 1998.</ref> contouring,<ref>Szalka, G. Soos, D. Hillier, L. Kek, G. Andrassy and C. Rekeczky, "Space-time Signature Analysis of 2D Echocardiograms Based on Topographic Cellular Active Contour Techniques", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref><ref>T. Szabot and P. Szolgay, "CNN-UM-Based Methods Using Deformable Contours on Smooth Boundaries", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref> [[moving object detection]],<ref>G. Costantini, D. Casali, and R. Perfetti, "Detection of Moving Objects in a Binocular Video Sequence", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref> axis of symmetry detection,<ref>G Costantini, D. Casafi., and R. Perfetti, "A New CNN-based Method for Detection of the Axis of Symmetry.", Int’l Workshop on Cellular Neural Networks and Their Applications, 2006.</ref> and [[image fusion]].<ref>I. Szatmari, P. Foldesy, C. Rekeczky and A. Zarandy, "Image Processing Library for the Aladdin Computer", Int’l Workshop on Cellular Neural Networks and Their Applications, 2005.</ref><ref>I. Szatmari, P. Foldesy, C. Rekeczky and A. Zarandy, "Image processing library for the Aladdin Visual Computer", Int’l Workshop on Cellular Neural Networks and Their Applications, 2002.</ref><ref>K. Wiehler, M. Perezowsky, R. Grigat, "A Detailed Analysis of Different CNN Implementations for a Real-Time Image Processing System", Int’l Workshop on Cellular Neural Networks and Their Applications, 2000.</ref>
Due to their processing capabilities and flexibility, CNN processors have been used and
=== Biology and medicine ===
|