Analytic function of a matrix: Difference between revisions

Content deleted Content added
Cauchy integral: Various changes
Line 172:
=== Operator monotone ===
{{Main|Operator monotone function}}
A function {{mvar|f}} is called operator monotone if and only if <math> 0 \prec A \preceq H \Rightarrow f(A) \preceq f(H) </math> for all self-adjoint matrices {{math|''A'',''H''}} with spectra in the ___domain of {{mvar|f}}. This is analogous to [[monotonic function|monotone function]] in the scalar case.
A function <math>f</math> is called operator monotone if and only if
<math>
0 \prec A \preceq H \Rightarrow f(A) \preceq f(H)
</math>
for all self-adjoint matrices <math>A,H</math> with spectra in the ___domain of f.
This is analogous to [[monotonic function|monotone function]] in the scalar case.
 
=== Operator concave/convex ===
A function <math>{{mvar|f</math>}} is called operator concave if and only if
:<math> \tau f(A) + (1-\tau) f(H) \preceq f \left ( \tau A + (1-\tau)H \right ) </math>
:<math>
for all self-adjoint matrices {{math|''A'',''H''}} with spectra in the ___domain of {{mvar|f}} and <math>\tau \in [0,1]</math>. This definition is analogous to a [[concave function|concave scalar function]]. An operator convex function can be defined be switching <math>\preceq</math> to <math>\succeq</math> in the definition above.
\tau f(A) + (1-\tau) f(H) \preceq f \left ( \tau A + (1-\tau)H \right )
</math>
for all self-adjoint matrices <math>A,H</math> with spectra in the ___domain of f and <math>\tau \in [0,1]</math>.
This definition is analogous to a [[concave function|concave scalar function]].
An operator convex function can be defined be switching <math>\preceq</math> to <math>\succeq</math> in the
definition above.
 
===Examples===