Content deleted Content added
→Cauchy integral: Various changes |
|||
Line 172:
=== Operator monotone ===
{{Main|Operator monotone function}}
A function {{mvar|f}} is called operator monotone if and only if <math> 0 \prec A \preceq H \Rightarrow f(A) \preceq f(H) </math> for all self-adjoint matrices {{math|''A'',''H''}} with spectra in the ___domain of {{mvar|f}}. This is analogous to [[monotonic function|monotone function]] in the scalar case.
=== Operator concave/convex ===
A function
:<math> \tau f(A) + (1-\tau) f(H) \preceq f \left ( \tau A + (1-\tau)H \right ) </math>▼
for all self-adjoint matrices {{math|''A'',''H''}} with spectra in the ___domain of {{mvar|f}} and <math>\tau \in [0,1]</math>. This definition is analogous to a [[concave function|concave scalar function]]. An operator convex function can be defined be switching <math>\preceq</math> to <math>\succeq</math> in the definition above.
▲\tau f(A) + (1-\tau) f(H) \preceq f \left ( \tau A + (1-\tau)H \right )
===Examples===
|