Content deleted Content added
→Applications: changed some links |
→Moments: fixed some links |
||
Line 74:
: <math>E[x^k] = \int_0^1 \left( \sum_{i=1}^n a_i g_i(y) \right)^k dy</math>
Whether such moments exist in closed form depends on the choice of QPD basis functions <math>g_i (y)</math>. The unbounded [[metalog distribution
=== Simulation ===
Line 86:
* The quantile function of the [[Cauchy distribution]], <math>x=x_0+\gamma \tan[\pi(y-0.5)]</math>.
* The quantile function of the [[logistic distribution]], <math>x=\mu+s \ln(y/(1-y) )</math>.
* The unbounded [[metalog
* The [https://en.wikipedia.org/wiki/Metalog_distribution#Unbounded,_semibounded,_and_bounded_metalog_distributions semi-bounded and bounded metalog distributions],
* The [https://en.wikipedia.org/wiki/Metalog_distribution#SPT_metalog_distributions SPT (symmetric-percentile triplet) unbounded, semi-bounded, and bounded metalog distributions],
* The Simple Q-Normal distribution<ref>[[doi:10.1287/deca.1110.0213|Keelin, T.W., and Powley, B.W. (2011), pp. 208–210]]</ref>
* The metadistributions, including the meta-normal<ref>[[doi:10.1287/deca.2016.0338|Keelin, T.W. (2016), p. 253.]]</ref>
* Quantile functions expressed as [[polynomial]] functions of cumulative probability <math>y</math>, including [[Chebyshev polynomial]] functions.
Like the SPT metalog distributions,
== Applications ==
|