Differentiable vector-valued functions from Euclidean space: Difference between revisions
Content deleted Content added
Added commentary |
|||
Line 49:
{{See also|Distribution (mathematics)}}
In this section, the [[space of smooth test functions]] and its canonical LF-topology are generalized to functions valued in general [[Complete topological vector space|complete]] Hausdorff locally convex [[topological vector
Throughout, let <math>Y</math> be a Hausdorff [[topological vector space]] (TVS), let <math>k \in \{ 0, 1, \ldots, \infty \},</math> and let <math>\Omega</math> be either:
Line 58:
For any <math>k = 0, 1, \ldots, \infty,</math> let <math>C^k(\Omega;Y)</math> denote the vector space of all <math>C^k</math> <math>Y</math>-valued maps defined on <math>\Omega</math> and let <math>C_c^k(\Omega;Y)</math> denote the vector subspace of <math>C^k(\Omega;Y)</math> consisting of all maps in <math>C^k(\Omega;Y)</math> that have compact support.
Let <math>C^k(\Omega)</math> denote <math>C^k
Give <math>C_c^k(\Omega;Y)</math> the topology of uniform convergence of the functions together with their derivatives of order <math>< k + 1</math> on the compact subsets of <math>\Omega.</math>{{sfn|Trèves|2006|pp=412–419}}
Suppose <math>\Omega_1 \subseteq \Omega_2 \subseteq \cdots</math> is a sequence of [[relatively compact]] open subsets of <math>\Omega</math> whose union is <math>\Omega</math> and that satisfy <math>\overline{\Omega_i} \subseteq \Omega_{i+1}</math> for all <math>i.</math>
Line 80:
For any compact subset <math>K \subseteq \Omega,</math> denote the set of all <math>f</math> in <math>C^k(\Omega;Y)</math> whose support lies in <math>K</math> (in particular, if <math>f \in C^k(K;Y)</math> then the ___domain of <math>f</math> is <math>\Omega</math> rather than <math>K</math>) and give it the subspace topology induced by <math>C^k(\Omega;Y).</math>{{sfn|Trèves|2006|pp=412–419}}
If <math>K</math> is a compact space and <math>Y</math> is a Banach space, then <math>C^0(K;Y)</math> becomes a Banach space normed by <math>\| f \| := \sup_{\omega \in \Omega} \| f(\omega) \|.</math>{{sfn|Trèves|2006|pp=446–451}}
Let <math>C^k(K)</math> denote <math>C^k
For any two compact subsets <math>K \subseteq L \subseteq \Omega,</math> the inclusion
:<math>\operatorname{In}_{K}^{L} : C^k(K;Y) \to C^k(L;Y)</math>
Line 124:
Suppose henceforth that <math>Y</math> is a Hausdorff space.
Given a function <math>f \in C^k
This defines a bilinear map <math>\otimes : C^k
this bilinear map turns this subspace into a tensor product of <math>C^k
Furthermore, if <math>C_c^k
If <math>X</math> is locally compact then <math>C_c^{0}
{{math theorem|name=Theorem|note=|style=|math_statement=
If <math>Y</math> is a complete Hausdorff locally convex space, then <math>C^k
}}
|